1,719 research outputs found

    Inter-Domain Popularity-aware Video Caching in Future Internet Architectures

    Get PDF
    Current TCP/IP based network is suffering from the usage of IP especially in the era of Internet of things (IoT). Recently Content Centric Network (CCN) is proposed as an alternative of the future network architecture. In CCN, data itself, which is authenticated and secured, is a name and can be directly requested at the network level instead of using IP and Domain Name System (DNS). Another difference between CCN and traditional networks is that the routers in CCN have the caching abilities. Then the end users can obtain the data from routers instead of from the remote server if the content has been stored in the router. Hence the overall network performance can be improved by reducing the required transmission hops and the advantage of the CCN caching has been shown in literature. In this paper, we design a new caching policy for the popularity-aware video caching in CCN to handle the `redundancy\u27 problem in the existing schemes, where the same content may be stored multiple times along the road from server to users, thus leading to a significant performance degradation. Simulations are conducted and we could observe that the proposed scheme performs better comparing with the existing caching policies.Location: Taipei, TAIWANDate: AUG 19-20, 201

    End-to-end resource management for federated delivery of multimedia services

    Get PDF
    Recently, the Internet has become a popular platform for the delivery of multimedia content. Currently, multimedia services are either offered by Over-the-top (OTT) providers or by access ISPs over a managed IP network. As OTT providers offer their content across the best-effort Internet, they cannot offer any Quality of Service (QoS) guarantees to their users. On the other hand, users of managed multimedia services are limited to the relatively small selection of content offered by their own ISP. This article presents a framework that combines the advantages of both existing approaches, by dynamically setting up federations between the stakeholders involved in the content delivery process. Specifically, the framework provides an automated mechanism to set up end-to-end federations for QoS-aware delivery of multimedia content across the Internet. QoS contracts are automatically negotiated between the content provider, its customers, and the intermediary network domains. Additionally, a federated resource reservation algorithm is presented, which allows the framework to identify the optimal set of stakeholders and resources to include within a federation. Its goal is to minimize delivery costs for the content provider, while satisfying customer QoS requirements. Moreover, the presented framework allows intermediary storage sites to be included in these federations, supporting on-the-fly deployment of content caches along the delivery paths. The algorithm was thoroughly evaluated in order to validate our approach and assess the merits of including intermediary storage sites. The results clearly show the benefits of our method, with delivery cost reductions of up to 80 % in the evaluated scenario

    The Road Ahead for Networking: A Survey on ICN-IP Coexistence Solutions

    Full text link
    In recent years, the current Internet has experienced an unexpected paradigm shift in the usage model, which has pushed researchers towards the design of the Information-Centric Networking (ICN) paradigm as a possible replacement of the existing architecture. Even though both Academia and Industry have investigated the feasibility and effectiveness of ICN, achieving the complete replacement of the Internet Protocol (IP) is a challenging task. Some research groups have already addressed the coexistence by designing their own architectures, but none of those is the final solution to move towards the future Internet considering the unaltered state of the networking. To design such architecture, the research community needs now a comprehensive overview of the existing solutions that have so far addressed the coexistence. The purpose of this paper is to reach this goal by providing the first comprehensive survey and classification of the coexistence architectures according to their features (i.e., deployment approach, deployment scenarios, addressed coexistence requirements and architecture or technology used) and evaluation parameters (i.e., challenges emerging during the deployment and the runtime behaviour of an architecture). We believe that this paper will finally fill the gap required for moving towards the design of the final coexistence architecture.Comment: 23 pages, 16 figures, 3 table
    • …
    corecore