957 research outputs found

    Inter-Domain Authentication for Seamless Roaming in Heterogeneous Wireless Networks

    Get PDF
    The convergence of diverse but complementary wireless access technologies and inter-operation among administrative domains have been envisioned as crucial for the next generation wireless networks that will provide support for end-user devices to seamlessly roam across domain boundaries. The integration of existing and emerging heterogeneous wireless networks to provide such seamless roaming requires the design of a handover scheme that provides uninterrupted service continuity while facilitating the establishment of authenticity of the entities involved. The existing protocols for supporting re-authentication of a mobile node during a handover across administrative domains typically involve several round trips to the home domain, and hence introduce long latencies. Furthermore, the existing methods for negotiating roaming agreements to establish inter-domain trust rely on a lengthy manual process, thus, impeding seamless roaming across multiple domains in a truly heterogeneous wireless network. In this thesis, we present a new proof-token based authentication protocol that supports quick re-authentication of a mobile node as it moves to a new foreign domain without involving communication with the home domain. The proposed proof-token based protocol can also support establishment of spontaneous roaming agreements between a pair of domains that do not already have a direct roaming agreement, thus allowing flexible business models to be supported. We describe details of the new authentication architecture, the proposed protocol, which is based on EAP-TLS and compare the proposed protocol with existing protocols

    MIRAI Architecture for Heterogeneous Network

    Get PDF
    One of the keywords that describe next-generation wireless communications is "seamless." As part of the e-Japan Plan promoted by the Japanese Government, the Multimedia Integrated Network by Radio Access Innovation project has as its goal the development of new technologies to enable seamless integration of various wireless access systems for practical use by 2005. This article describes a heterogeneous network architecture including a common tool, a common platform, and a common access. In particular, software-defined radio technologies are used to develop a multiservice user terminal to access different wireless networks. The common platform for various wireless networks is based on a wireless-supporting IPv6 network. A basic access network, separated from other wireless access networks, is used as a means for wireless system discovery, signaling, and paging. A proof-of-concept experimental demonstration system is available

    Mobility and Handoff Management in Wireless Networks

    Get PDF
    With the increasing demands for new data and real-time services, wireless networks should support calls with different traffic characteristics and different Quality of Service (QoS)guarantees. In addition, various wireless technologies and networks exist currently that can satisfy different needs and requirements of mobile users. Since these different wireless networks act as complementary to each other in terms of their capabilities and suitability for different applications, integration of these networks will enable the mobile users to be always connected to the best available access network depending on their requirements. This integration of heterogeneous networks will, however, lead to heterogeneities in access technologies and network protocols. To meet the requirements of mobile users under this heterogeneous environment, a common infrastructure to interconnect multiple access networks will be needed. In this chapter, the design issues of a number of mobility management schemes have been presented. Each of these schemes utilizes IP-based technologies to enable efficient roaming in heterogeneous network. Efficient handoff mechanisms are essential for ensuring seamless connectivity and uninterrupted service delivery. A number of handoff schemes in a heterogeneous networking environment are also presented in this chapter.Comment: 28 pages, 11 figure

    Kerberos based authentication for inter-domain roaming in wireless heterogeneous network

    Get PDF
    AbstractAn increased demand in ubiquitous high speed wireless access has led integration of different wireless technologies provided by different administrative domains creating truly a heterogeneous network. Security is one of the major hurdles in such network environment. As a mobile station moves in and out of the coverage area of one wireless network to another, it needs to be authenticated. The existing protocols for authentication of a mobile station are typically centralized, where the home network participates in each authentication process. It requires home network to maintain roaming agreement with all other visiting networks. Moreover, the round trip time to home network results high latency. This paper is focused on developing authentication protocol for wireless network irrespective of the technologies or the administrative domain. We propose a secure protocol which adopts strong features of Kerberos based on tickets for rigorous mutual authentication and session key establishment along with issuance of token so that the mobile station can have access to not only the roaming partner of home network but also to the roaming partner of previous visited networks. The performance evaluation and comparative analysis of the proposed protocol is carried out with the already implemented standard protocols and most remarkable research works till date to confirm the solidity of the results presented

    Handoff Management: A Critical Function in Mobility Management for Fourth Generation (4G) Wireless Networks

    Get PDF
    Efficient mobility management techniques are critical to the success of next-generation wireless systems. Handoff management, which is one of the two basic functions of mobility management, has become more critical in fourth generation wireless networks which support multimedia services. The paper treats basic issues involved in handoff management aspect of general mobility management in wireless communication systems. The relevance of mobility management, handoff management, and general mobility management protocols are explained. The taxonomy of handoff mechanisms, causes of delays in handoffs, and security in handoff procedures are elicited. The paper concludes highlighting some open areas of research in providing seamless services

    Efficient Handoff for QoS Enhancement in Heterogeneous Wireless Networks (UMTS/WLAN Interworking)

    Get PDF
    Today’s Wireless Communications technologies prove us that wireless communications will in the long run be composed of different communication networks as a way to benefit from each other. This can however be achieved from cellular networks and wireless local area networks that show some compatible characteristics that enable them be integrated. Scenarios typically behind these integrations is the UMTS and WLAN interworking where UMTS network is known for its wide area of coverage and nearly roaming however, known for lack of enough data rate. This is contrary with WLAN which is known for high data rate and cheaper compared to UMTS. WLAN however has a small area of coverage and lacks roaming. This in regard brings the idea that the two different networks being integrated could provide the means for mobile users to be gratified with a supported coverage and quality at anywhere and anytime with seamless access to internet

    Mobility Management in beyond 3G-Environments

    Get PDF
    Beyond 3G-environments are typically defined as environments that integrate different wireless and fixed access network technologies. In this paper, we address IP based Mobility Management (MM) in beyond 3G-environments with a focus on wireless access networks, motivated by the current trend of WiFi, GPRS, and UMTS networks. The GPRS and UMTS networks provide countrywide network access, while the WiFi networks provide network access in local areas such as city centres and airports. As a result, mobile end-users can be always on-line and connected to their preferred network(s), these network preferences are typically stored in a user profile. For example, an end-user who wishes to be connected with highest bandwidth could be connected to a WiFi network when available and fall back to GPRS when moving outside the hotspot area.\ud In this paper, we consider a combination of MM for legacy services (like web browsing, telnet, etc.) using Mobile IP and multimedia services using SIP. We assume that the end-user makes use of multi-interface terminals with the capability of selecting one or more types of access networks\ud based on preferences. For multimedia sessions, like VoIP or streaming video, we distinguish between changes in network access when the end-user is in a session or not in a session. If the end-user is not in a session, he or she needs to be able to start new sessions and receive invitations for new sessions. If the end-user is in a session, the session needs to be handed over to the new access network as seamless as possible from the perspective of the end-user. We propose an integrated but flexible solution to these problems that facilitates MM with a customizable transparency to applications and end-users

    Mobile IP: state of the art report

    Get PDF
    Due to roaming, a mobile device may change its network attachment each time it moves to a new link. This might cause a disruption for the Internet data packets that have to reach the mobile node. Mobile IP is a protocol, developed by the Mobile IP Internet Engineering Task Force (IETF) working group, that is able to inform the network about this change in network attachment such that the Internet data packets will be delivered in a seamless way to the new point of attachment. This document presents current developments and research activities in the Mobile IP area
    • …
    corecore