307 research outputs found

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal

    Data transfer scheduling with advance reservation and provisioning

    Get PDF
    Over the years, scientific applications have become more complex and more data intensive. Although through the use of distributed resources the institutions and organizations gain access to the resources needed for their large-scale applications, complex middleware is required to orchestrate the use of these storage and network resources between collaborating parties, and to manage the end-to-end processing of data. We present a new data scheduling paradigm with advance reservation and provisioning. Our methodology provides a basis for provisioning end-to-end high performance data transfers which require integration between system, storage and network resources, and coordination between reservation managers and data transfer nodes. This allows researchers/users and higher level meta-schedulers to use data placement as a service where they can plan ahead and reserve time and resources for their data movement operations. We present a novel approach for evaluating time-dependent structures with bandwidth guaranteed paths. We present a practical online scheduling model using advance reservation in dynamic network with time constraints. In addition, we report a new polynomial algorithm presenting possible reservation options and alternatives for earliest completion and shortest transfer duration. We enhance the advance network reservation system by extending the underlying mechanism to provide a new service in which users submit their constraints and the system suggests possible reservation requests satisfying users\u27 requirements. We have studied scheduling data transfer operation with resource and time conflicts. We have developed a new scheduling methodology considering resource allocation in client sites and bandwidth allocation on network link connecting resources. Some other major contributions of our study include enhanced reliability, adaptability, and performance optimization of distributed data placement tasks. While designing this new data scheduling architecture, we also developed other important methodologies such as early error detection, failure awareness, job aggregation, and dynamic adaptation of distributed data placement tasks. The adaptive tuning includes dynamically setting data transfer parameters and controlling utilization of available network capacity. Our research aims to provide a middleware to improve the data bottleneck in high performance computing systems

    A framework for Traffic Engineering in software-defined networks with advance reservation capabilities

    Get PDF
    298 p.En esta tesis doctoral se presenta una arquitectura software para facilitar la introducción de técnicas de ingeniería de tráfico en redes definidas por software. La arquitectura ha sido diseñada de forma modular, de manera que soporte múltiples casos de uso, incluyendo su aplicación en redes académicas. Cabe destacar que las redes académicas se caracterizan por proporcionar servicios de alta disponibilidad, por lo que la utilización de técnicas de ingeniería de tráfico es de vital importancia a fin de garantizar la prestación del servicio en los términos acordados. Uno de los servicios típicamente prestados por las redes académicas es el establecimiento de circuitos extremo a extremo con una duración determinada en la que una serie de recursos de red estén garantizados, conocido como ancho de banda bajo demanda, el cual constituye uno de los casos de uso en ingeniería de tráfico más desafiantes. Como consecuencia, y dado que esta tesis doctoral ha sido co-financiada por la red académica GÉANT, la arquitectura incluye soporte para servicios de reserva avanzada. La solución consiste en una gestión de los recursos de red en función del tiempo, la cual mediante el empleo de estructuras de datos y algoritmos específicamente diseñados persigue la mejora de la utilización de los recursos de red a la hora de prestar este tipo de servicios. La solución ha sido validada teniendo en cuenta los requisitos funcionales y de rendimiento planteados por la red GÉANT. Así mismo, cabe destacar que la solución será utilizada en el despliegue piloto del nuevo servicio de ancho de banda bajo demanda de la red GÉANT a finales del 2017

    A Survey of Quality of Service Differentiation Mechanisms for Optical Burst Switching Networks

    Get PDF
    Cataloged from PDF version of article.This paper presents an overview of Quality of Service (QoS) differentiation mechanisms proposed for Optical Burst Switching (OBS) networks. OBS has been proposed to couple the benefits of both circuit and packet switching for the ‘‘on demand’’ use of capacity in the future optical Internet. In such a case, QoS support imposes some important challenges before this technology is deployed. This paper takes a broader view on QoS, including QoS differentiation not only at the burst but also at the transport levels for OBS networks. A classification of existing QoS differentiation mechanisms for OBS is given and their efficiency and complexity are comparatively discussed. We provide numerical examples on how QoS differentiation with respect to burst loss rate and transport layer throughput can be achieved in OBS networks. © 2009 Elsevier B.V. All rights reserved

    An Application-aware SDN Controller for Hybrid Optical-electrical DC Networks

    Get PDF
    The adoption of optical switching technologies in Data Centre Networks (DCNs) offers a solution for high speed traffic and energy efficiency in Data Centre (DC) operational management, enabling an easy scaling of DC infrastructures. Flexible, slotted allocation of optical resources is fundamental to efficiently support the dynamicity of DC traffic. In this context, the NEPHELE project proposes a Time Division Multiple Access approach for optical resource allocation, orchestrated through a Software Defined Networking controller which coordinates the DCN configuration based on real-time cloud application requests

    ISOGA: Integrated Services Optical Grid Architecture for Emerging E-Science Collaborative Applications

    Full text link

    Performance analysis of optical burst switching network

    Get PDF
    In this dissertation, after reviewing the new paradigm in the optical switching network invoked by the DWDM technology and studying the changes of the schemes, we design the new optical burst switching networks, analyze the performance of the proposed scheme and interpret the analysis results. For design point of view, the fairness guaranteeing scheme and burst blocking reduction schemes in the mesh networks, loss less burst transmission scheme in DWDM metro ring networks are considered. As a future broad band optical alternative, optical burst switching has been receive much focus. We review the property of the optical switching technologies such as optical packet switching, optical circuit switching, and optical burst switching. The benefits of the optical burst switching is illustrated. Even though optical burst switching has several advantage, it has intrinsic technology barrier. We study the research activities to remove the basic problem of optical burst switching. Optical deflection, optical burst segmentation, burst cloning, and burst piggy backing scheme is considered. To improve the network performance, we design optical burst switching network in mesh networks and metro ring networks. We also implement the proposed network by our own developed network test bench. We verify the proposed network performance by analyzing the network mathematically in terms of blocking rate, delay and throughput. The theoretical results are compared with the simulation results. The verification shows that our proposed schemes outperform those of the conventional scheme. Our mathematical models are also matched to the simulation results. The interpretation of the verification shows that our assumption and theoretical analysis is well designed. The results illustrate that the difference between the simulation results and mathematical results is within the considerable margin. The contribution of the thesis is that the performance improvement schemes in both of the mesh network and ring network are proposed and analyzed. By considering feasibility of the future optical networks, proposed scheme in this thesis is more deployable in commercial network in terms of the burst blocking rate and delay as well as the network stability
    corecore