122 research outputs found

    Improving multithreading performance for clustered VLIW architectures.

    Get PDF
    Very Long Instruction Word (VLIW) processors are very popular in embedded and mobile computing domain. Use of VLIW processors range from Digital Signal Processors (DSPs) found in a plethora of communication and multimedia devices to Graphics Processing Units (GPUs) used in gaming and high performance computing devices. The advantage of VLIWs is their low complexity and low power design which enable high performance at a low cost. Scalability of VLIWs is limited by the scalability of register file ports. It is not viable to have a VLIW processor with a single large register file because of area and power consumption implications of the register file. Clustered VLIW solve the register file scalability issue by partitioning the register file into multiple clusters and a set of functional units that are attached to register file of that cluster. Using a clustered approach, higher issue width can be achieved while keeping the cost of register file within reasonable limits. Several commercial VLIW processors have been designed using the clustered VLIW model. VLIW processors can be used to run a larger set of applications. Many of these applications have a good Lnstruction Level Parallelism (ILP) which can be efficiently utilized. However, several applications, specially the ones that are control code dominated do not exibit good ILP and the processor is underutilized. Cache misses is another major source of resource underutiliztion. Multithreading is a popular technique to improve processor utilization. Interleaved MultiThreading (IMT) hides cache miss latencies by scheduling a different thread each cycle but cannot hide unused instructions slots. Simultaneous MultiThread (SMT) can also remove ILP under-utilization by issuing multiple threads to fill the empty instruction slots. However, SMT has a higher implementation cost than IMT. The thesis presents Cluster-level Simultaneous MultiThreading (CSMT) that supports a limited form of SMT where VLIW instructions from different threads are merged at a cluster-level granularity. This lowers the hardware implementation cost to a level comparable to the cheap IMT technique. The more complex SMT combines VLIW instructions at the individual operation-level granularity which is quite expensive especially in for a mobile solution. We refer to SMT at operation-level as OpSMT to reduce ambiguity. While previous studies restricted OpSMT on a VLIW to 2 threads, CSMT has a better scalability and upto 8 threads can be supported at a reasonable cost. The thesis proposes several other techniques to further improve CSMT performance. In particular, Cluster renaming remaps the clusters used by instructions of different threads to reduce resource conflicts. Cluster renaming is quite effective in reducing the issue-slots under-utilization and significantly improves CSMT performance.The thesis also proposes: a hybrid between IMT and CSMT which increases the number of supported threads, heterogeneous instruction merging where some instructions are combined using SMT and CSMT rest, and finally, split-issue, a technique that allows to launch partially an instruction making it easier to be combined with others

    Development of Energy Models for Design Space Exploration of Embedded Many-Core Systems

    Full text link
    This paper introduces a methodology to develop energy models for the design space exploration of embedded many-core systems. The design process of such systems can benefit from sophisticated models. Software and hardware can be specifically optimized based on comprehensive knowledge about application scenario and hardware behavior. The contribution of our work is an automated framework to estimate the energy consumption at an arbitrary abstraction level without the need to provide further information about the system. We validated our framework with the configurable many-core system CoreVA-MPSoC. Compared to a simulation of the CoreVA-MPSoC on gate level in a 28nm FD-SOI standard cell technology, our framework shows an average estimation error of about 4%.Comment: Presented at HIP3ES, 201

    Compiler Techniques for Loosely-Coupled Multi-Cluster Architectures

    Get PDF
    No abstract available

    Cooperative Data and Computation Partitioning for Decentralized Architectures.

    Full text link
    Scalability of future wide-issue processor designs is severely hampered by the use of centralized resources such as register files, memories and interconnect networks. While the use of centralized resources eases both hardware design and compiler code generation efforts, they can become performance bottlenecks as access latencies increase with larger designs. The natural solution to this problem is to adapt the architecture to use smaller, decentralized resources. Decentralized architectures use smaller, faster components and exploit distributed instruction-level parallelism across the resources. A multicluster architecture is an example of such a decentralized processor, where subsets of smaller register files, functional units, and memories are grouped together in a tightly coupled unit, forming a cluster. These clusters can then be replicated and connected together to form a scalable, high-performance architecture. The main difficulty with decentralized architectures resides in compiler code generation. In a centralized Very Long Instruction Word (VLIW) processor, the compiler must statically schedule each operation to both a functional unit and a time slot for execution. In contrast, for a decentralized multicluster VLIW, the compiler must consider the additional effects of cluster assignment, recognizing that communication between clusters will result in a delay penalty. In addition, if the multicluster processor also has partitioned data memories, the compiler has the additional task of assigning data objects to their respective memories. Each decision, of cluster, functional unit, memory, and time slot, are highly interrelated and can have dramatic effects on the best choice for every other decision. This dissertation addresses the issues of extracting and exploiting inherent parallelism across decentralized resources through compiler analysis and code generation techniques. First, a static analysis technique to partition data objects is presented, which maps data objects to decentralized scratchpad memories. Second, an alternative profile-guided technique for memory partitioning is presented which can effectively map data access operations onto distributed caches. Finally, a detailed, resource-aware partitioning algorithm is presented which can effectively split computation operations of an application across a set of processing elements. These partitioners work in tandem to create a high-performance partition assignment of both memory and computation operations for decentralized multicluster or multicore processors.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/57649/2/mchu_1.pd
    • …
    corecore