41,935 research outputs found

    Interpreting EEG alpha activity

    Get PDF
    Exploring EEG alpha oscillations has generated considerable interest, in particular with regards to the role they play in cognitive, psychomotor, psycho-emotional and physiological aspects of human life. However, there is no clearly agreed upon definition of what constitutes ‘alpha activity’ or which of the many indices should be used to characterize it. To address these issues this review attempts to delineate EEG alpha-activity, its physical, molecular and morphological nature, and examine the following indices: (1) the individual alpha peak frequency; (2) activation magnitude, as measured by alpha amplitude suppression across the individual alpha bandwidth in response to eyes opening, and (3) alpha “auto-rhythmicity” indices: which include intra-spindle amplitude variability, spindle length and steepness. Throughout, the article offers a number of suggestions regarding the mechanism(s) of alpha activity related to inter and intra-individual variability. In addition, it provides some insights into the various psychophysiological indices of alpha activity and highlights their role in optimal functioning and behavior

    Phase of beta-frequency tACS over primary motor cortex modulates corticospinal excitability

    No full text
    The assessment of corticospinal excitability by means of transcranial magnetic stimulation-induced motor evoked potentials is an established diagnostic tool in neurophysiology and a widely used procedure in fundamental brain research. However, concern about low reliability of these measures has grown recently. One possible cause of high variability of MEPs under identical acquisition conditions could be the influence of oscillatory neuronal activity on corticospinal excitability. Based on research showing that transcranial alternating current stimulation can entrain neuronal oscillations we here test whether alpha or beta frequency tACS can influence corticospinal excitability in a phase-dependent manner. We applied tACS at individually calibrated alpha- and beta-band oscillation frequencies, or we applied sham tACS. Simultaneous single TMS pulses time locked to eight equidistant phases of the ongoing tACS signal evoked MEPs. To evaluate offline effects of stimulation frequency, MEP amplitudes were measured before and after tACS. To evaluate whether tACS influences MEP amplitude, we fitted one-cycle sinusoids to the average MEPs elicited at the different phase conditions of each tACS frequency. We found no frequency-specific offline effects of tACS. However, beta-frequency tACS modulation of MEPs was phase-dependent. Post hoc analyses suggested that this effect was specific to participants with low (<19 Hz) intrinsic beta frequency. In conclusion, by showing that beta tACS influences MEP amplitude in a phase-dependent manner, our results support a potential role attributed to neuronal oscillations in regulating corticospinal excitability. Moreover, our findings may be useful for the development of TMS protocols that improve the reliability of MEPs as a meaningful tool for research applications or for clinical monitoring and diagnosis. (C) 2018 Elsevier Ltd. All rights reserved

    Disruption to control network function correlates with altered dynamic connectivity in the wider autism spectrum.

    Get PDF
    Autism is a common developmental condition with a wide, variable range of co-occurring neuropsychiatric symptoms. Contrasting with most extant studies, we explored whole-brain functional organization at multiple levels simultaneously in a large subject group reflecting autism's clinical diversity, and present the first network-based analysis of transient brain states, or dynamic connectivity, in autism. Disruption to inter-network and inter-system connectivity, rather than within individual networks, predominated. We identified coupling disruption in the anterior-posterior default mode axis, and among specific control networks specialized for task start cues and the maintenance of domain-independent task positive status, specifically between the right fronto-parietal and cingulo-opercular networks and default mode network subsystems. These appear to propagate downstream in autism, with significantly dampened subject oscillations between brain states, and dynamic connectivity configuration differences. Our account proposes specific motifs that may provide candidates for neuroimaging biomarkers within heterogeneous clinical populations in this diverse condition

    MEG sensor and source measures of visually induced gamma-band oscillations are highly reliable

    Get PDF
    High frequency brain oscillations are associated with numerous cognitive and behavioral processes. Non-invasive measurements using electro-/magnetoencephalography (EEG/MEG) have revealed that high frequency neural signals are heritable and manifest changes with age as well as in neuropsychiatric illnesses. Despite the extensive use of EEG/MEG-measured neural oscillations in basic and clinical research, studies demonstrating test–retest reliability of power and frequency measures of neural signals remain scarce. Here, we evaluated the test–retest reliability of visually induced gamma (30–100 Hz) oscillations derived from sensor and source signals acquired over two MEG sessions. The study required participants (N = 13) to detect the randomly occurring stimulus acceleration while viewing a moving concentric grating. Sensor and source MEG measures of gamma-band activity yielded comparably strong reliability (average intraclass correlation, ICC = 0.861). Peak stimulus-induced gamma frequency (53–72 Hz) yielded the highest measures of stability (ICCsensor = 0.940; ICCsource = 0.966) followed by spectral signal change (ICCsensor = 0.890; ICCsource = 0.893) and peak frequency bandwidth (ICCsensor = 0.856; ICCsource = 0.622). Furthermore, source-reconstruction significantly improved signal-to-noise for spectral amplitude of gamma activity compared to sensor estimates. Our assessments highlight that both sensor and source derived estimates of visually induced gamma-band oscillations from MEG signals are characterized by high test–retest reliability, with source derived oscillatory measures conferring an improvement in the stability of peak-frequency estimates. Importantly, our finding of high test–retest reliability supports the feasibility of pharma-MEG studies and longitudinal aging or clinical studies

    Lasting EEG/MEG aftereffects on human brain oscillations after rhythmic transcranial brain stimulation: Level of control over oscillatory network activity

    Get PDF
    A number of rhythmic protocols have emerged for non-invasive brain stimulation (NIBS) in humans, including transcranial alternating current stimulation (tACS), oscillatory transcranial direct current stimulation (otDCS) and repetitive (also called rhythmic) transcranial magnetic stimulation (rTMS). With these techniques, it is possible to match the frequency of the externally applied electromagnetic fields to the intrinsic frequency of oscillatory neural population activity ("frequency-tuning"). Mounting evidence suggests that by this means tACS, otDCS, and rTMS can entrain brain oscillations and promote associated functions in a frequency-specific manner, in particular during (i.e. online to) stimulation. Here, we focus instead on the changes in oscillatory brain activity that persist after the end of stimulation. Understanding such aftereffects in healthy participants is an important step for developing these techniques into potentially useful clinical tools for the treatment of specific patient groups. Reviewing the electrophysiological evidence in healthy participants, we find aftereffects on brain oscillations to be a common outcome following tACS/otDCS and rTMS. However, we did not find a consistent, predictable pattern of aftereffects across studies, which is in contrast to the relative homogeneity of reported online effects. This indicates that aftereffects are partially dissociated from online, frequency-specific (entrainment) effects during tACS/otDCS and rTMS. We outline possible accounts and future directions for a better understanding of the link between online entrainment and offline aftereffects, which will be key for developing more targeted interventions into oscillatory brain activity

    FMRI resting slow fluctuations correlate with the activity of fast cortico-cortical physiological connections

    Get PDF
    Recording of slow spontaneous fluctuations at rest using functional magnetic resonance imaging (fMRI) allows distinct long-range cortical networks to be identified. The neuronal basis of connectivity as assessed by resting-state fMRI still needs to be fully clarified, considering that these signals are an indirect measure of neuronal activity, reflecting slow local variations in de-oxyhaemoglobin concentration. Here, we combined fMRI with multifocal transcranial magnetic stimulation (TMS), a technique that allows the investigation of the causal neurophysiological interactions occurring in specific cortico-cortical connections. We investigated whether the physiological properties of parieto-frontal circuits mapped with short-latency multifocal TMS at rest may have some relationship with the resting-state fMRI measures of specific resting-state functional networks (RSNs). Results showed that the activity of fast cortico-cortical physiological interactions occurring in the millisecond range correlated selectively with the coupling of fMRI slow oscillations within the same cortical areas that form part of the dorsal attention network, i.e., the attention system believed to be involved in reorientation of attention. We conclude that resting-state fMRI ongoing slow fluctuations likely reflect the interaction of underlying physiological cortico-cortical connections

    Phase Dependency of the Human Primary Motor Cortex and Cholinergic Inhibition Cancelation during Beta tACS

    Get PDF
    The human motor cortex has a tendency to resonant activity at about 20 Hz so stimulation should more readily entrain neuronal populations at this frequency. We investigated whether and how different interneuronal circuits contribute to such resonance by using transcranial magnetic stimulation (TMS) during transcranial alternating current stimulation (tACS) at motor (20 Hz) and a nonmotor resonance frequency (7 Hz). We tested different TMS interneuronal protocols and triggered TMS pulses at different tACS phases. The effect of cholinergic short-latency afferent inhibition (SAI) was abolished by 20 Hz tACS, linking cortical beta activity to sensorimotor integration. However, this effect occurred regardless of the tACS phase. In contrast, 20 Hz tACS selectively modulated MEP size according to the phase of tACS during single pulse, GABAAergic short-interval intracortical inhibition (SICI) and glutamatergic intracortical facilitation (ICF). For SICI this phase effect was more marked during 20 Hz stimulation. Phase modulation of SICI also depended on whether or not spontaneous beta activity occurred at ~20 Hz, supporting an interaction effect between tACS and underlying circuit resonances. The present study provides in vivo evidence linking cortical beta activity to sensorimotor integration, and for beta oscillations in motor cortex being promoted by resonance in GABAAergic interneuronal circuits

    Test-retest reliability of the magnetic mismatch negativity response to sound duration and omission deviants

    Get PDF
    Mismatch negativity (MMN) is a neurophysiological measure of auditory novelty detection that could serve as a translational biomarker of psychiatric disorders, such as schizophrenia. However, the replicability of its magnetoencephalographic (MEG) counterpart (MMNm) has been insufficiently addressed. In the current study, test-retest reliability of the MMNm response to both duration and omission deviants was evaluated over two MEG sessions in 16 healthy adults. MMNm amplitudes and latencies were obtained at both sensor- and source-level using a cortically-constrained minimum-norm approach. Intraclass correlations (ICC) were derived to assess stability of MEG responses over time. In addition, signal-to-noise ratios (SNR) and within-subject statistics were obtained in order to determine MMNm detectability in individual participants. ICC revealed robust values at both sensor- and source-level for both duration and omission MMNm amplitudes (ICC = 0.81-0.90), in particular in the right hemisphere, while moderate to strong values were obtained for duration MMNm and omission MMNm peak latencies (ICC = 0.74-0.88). Duration MMNm was robustly identified in individual participants with high SNR, whereas omission MMNm responses were only observed in half of the participants. Our data indicate that MMNm to unexpected duration changes and omitted sounds are highly reproducible, providing support for the use of MEG-parameters in basic and clinical research
    • 

    corecore