353 research outputs found

    Effects of energy storage systems grid code requirements on interface protection performances in low voltage networks

    Get PDF
    The ever-growing penetration of local generation in distribution networks and the large diffusion of energy storage systems (ESSs) foreseen in the near future are bound to affect the effectiveness of interface protection systems (IPSs), with negative impact on the safety of medium voltage (MV) and low voltage (LV) systems. With the scope of preserving the main network stability, international and national grid connection codes have been updated recently. Consequently, distributed generators (DGs) and storage units are increasingly called to provide stabilizing functions according to local voltage and frequency. This can be achieved by suitably controlling the electronic power converters interfacing small-scale generators and storage units to the network. The paper focuses on the regulating functions required to storage units by grid codes currently in force in the European area. Indeed, even if such regulating actions would enable local units in participating to network stability under normal steady-state operating conditions, it is shown through dynamic simulations that they may increase the risk of unintentional islanding occurrence. This means that dangerous operating conditions may arise in LV networks in case dispersed generators and storage systems are present, even if all the end-users are compliant with currently applied connection standards

    Distributed Generation: Issues Concerning a Changing Power Grid Paradigm

    Get PDF
    Distributed generation is becoming increasingly prevalent on power grids around the world. Conventional designs and grid operations are not always sufficient for handling the implementation of distributed generation units; the new generation may result in undesirable operating conditions, or system failure. This paper investigates the primary issues involved with the implementation of distributed generation and maintaining the integrity of the power grid. The issues addressed include power flow, system protections, voltage regulation, intermittency, harmonics, and islanding. A case study is also presented to illustrate how these issues can be addressed when designing distributed generation installation on an existent distribution system. The case study design is performed on the campus distribution system of California Polytechnic State University, San Luis Obispo, with the design goal of implementing renewable energy sources to make the campus a net zero energy consumer

    Intentional Islanding of Active Distribution Networks by GenSets: An Analysis of Technical Constraints and Opportunities

    Get PDF
    The willingness to improve the security and reliability of power supply to end-users, often pushed by prescriptions of national regulatory authorities, is bringing considerable challenges for distribution system operators. Islanding a portion of the public distribution network after a fault is considered a measure to mitigate the effects of service interruptions. This procedure is usually carried out by counterfeeding the grid through a generator set (GenSet). Even if this approach is widely adopted around the world, reenergizing the grid and keeping the electric island stable is not a trivial task. In this framework, the scope of this paper is to provide a set of technical guidelines for the usage of GenSets to supply public grids in emergency conditions. The goal is to highlight the static and dynamic limits of the GenSet operations and simplify their exploitation for the grid operators. The numerical analyses, which have been carried out through the RMS simulation tool of the DigSilent PowerFactory software, also aim to evaluate the technical constraints in the case of active networks, which involve distributed generation implementing regulations according to ENTSO-E and Italian technical standards

    PMU-Based ROCOF Measurements: Uncertainty Limits and Metrological Significance in Power System Applications

    Full text link
    In modern power systems, the Rate-of-Change-of-Frequency (ROCOF) may be largely employed in Wide Area Monitoring, Protection and Control (WAMPAC) applications. However, a standard approach towards ROCOF measurements is still missing. In this paper, we investigate the feasibility of Phasor Measurement Units (PMUs) deployment in ROCOF-based applications, with a specific focus on Under-Frequency Load-Shedding (UFLS). For this analysis, we select three state-of-the-art window-based synchrophasor estimation algorithms and compare different signal models, ROCOF estimation techniques and window lengths in datasets inspired by real-world acquisitions. In this sense, we are able to carry out a sensitivity analysis of the behavior of a PMU-based UFLS control scheme. Based on the proposed results, PMUs prove to be accurate ROCOF meters, as long as the harmonic and inter-harmonic distortion within the measurement pass-bandwidth is scarce. In the presence of transient events, the synchrophasor model looses its appropriateness as the signal energy spreads over the entire spectrum and cannot be approximated as a sequence of narrow-band components. Finally, we validate the actual feasibility of PMU-based UFLS in a real-time simulated scenario where we compare two different ROCOF estimation techniques with a frequency-based control scheme and we show their impact on the successful grid restoration.Comment: Manuscript IM-18-20133R. Accepted for publication on IEEE Transactions on Instrumentation and Measurement (acceptance date: 9 March 2019

    A Real Multitechnology Microgrid in Venice: A Design Review

    Get PDF
    Electrical grids are evolving rapidly toward smart, self-regulating systems capable of managing distributed generation from intermittent renewable sources. Apart from hydroelectric, the large majority of them are photovoltaic (PV) systems grasping the fluctuating solar radiation and wind turbines (WT) capturing fickle wind energy, but other sources, which are at different stages of development, also generate energy with predictable or unpredictable intermittency. Several investigations have highlighted that, when power production from intermittent sources exceeds 20% of the total generation, the grid may face instabilities that can evolve into blackouts. Energy storage (ES) is a measure to balance source-load mismatches and to avoid such occurrence, but it can also provide a number of additional services which are part of the smart-grid paradigm. The operation of energy storage systems (ESSs) depends on the interface converters that manage the power flow and on the supervisors that control them according to the ESS, grid, and load features. Furthermore, the transmission system operator (TSO) may impose constraints on the ESS operation such as the obligation of contributing to primary regulation. Several numerical analyses have been developed to investigate the behavior of electrical grids provided with energy generation from renewable sources and energy storage, either islanded or connected to the national/transnational grid (macrogrid)

    Cascading Outages Detection and Mitigation Tool to Prevent Major Blackouts

    Get PDF
    Due to a rise of deregulated electric market and deterioration of aged power system infrastructure, it become more difficult to deal with the grid operating contingencies. Several major blackouts in the last two decades has brought utilities to focus on development of Wide Area Monitoring, Protection and Control (WAMPAC) systems. Availability of common measurement time reference as the fundamental requirement of WAMPAC system is attained by introducing the Phasor Measurement Units, or PMUs that are taking synchronized measurements using the GPS clock signal. The PMUs can calculate time-synchronized phasor values of voltage and currents, frequency and rate of change of frequency. Such measurements, alternatively called synchrophasors, can be utilized in several applications including disturbance and islanding detection, and control schemes. In this dissertation, an integrated synchrophasor-based scheme is proposed to detect, mitigate and prevent cascading outages and severe blackouts. This integrated scheme consists of several modules. First, a fault detector based on electromechanical wave oscillations at buses equipped with PMUs is proposed. Second, a system-wide vulnerability index analysis module based on voltage and current synchrophasor measurements is proposed. Third, an islanding prediction module which utilizes an offline islanding database and an online pattern recognition neural network is proposed. Finally, as the last resort to interrupt series of cascade outages, a controlled islanding module is developed which uses spectral clustering algorithm along with power system state variable and generator coherency information

    A Distribution Network Reconfiguration and Islanding Strategy

    Get PDF
    With the development of Smart Grid, the reliability and stability of the power system are significantly improved. However, a large-scale outage still possibly occurs when the power system is exposed to extreme conditions. Power system blackstart, the restoration after a complete or partial outage is a key issue needed to be studied for the safety of power system. Network reconfiguration is one of the most important steps when crews try to rapidly restore the network. Therefore, planning an optimal network reconfiguration scheme with the most efficient restoration target at the primary stage of system restoration is necessary and it also builds the foundation to the following restoration process. Besides, the utilization of distributed generators (DGs) has risen sharply in the power system and it plays a critical role in the future Smart Grid to modernize the power grid. The emerging Smart Grid technology, which enables self-sufficient power systems with DGs, provides further opportunities to enhance self-healing capability. The introduction of DGs makes a quick and efficient restoration of power system possible. In this thesis, based on the topological characteristics of scale-free networks and the Discrete Particle Swarm Optimization (DPSO) algorithm, a network reconfiguration scheme is proposed. A power system structure can be converted into a system consisting of nodes and edges. Indices that reflect the nodes’ and edges’ topological characteristics in Graph Theory can be utilized to describe the importance of loads and transmission lines in the power system. Therefore, indices like node importance degree, line betweenness centrality and clustering coefficient are introduced to weigh the importance of loads and transmission lines. Based on these indices, an objective function which aims to restore as many important loads and transmission lines as possible and also subjected to constraints is formulated. The effectiveness of potential reconfiguration scheme is verified by Depth First Search (DFS) algorithm. Finally, DPSO algorithm is employed to obtain the optimal reconfiguration scheme. The comprehensive reconfiguration scheme proposed by my thesis can be the theoretical basis for the power grid dispatchers. Besides, DGs are introduced in this thesis to enhance the restoration efficiency and success rate at the primary stage of network restoration. Firstly, the selection and classification principle of DGs are introduced in my thesis. In addition, the start sequence principle of DGs is presented as a foundation for the following stability analysis of network restoration with DGs. Then, the objective function subjected to constraints that aims to restore as many important loads as possible is formulated. Based on the restoration objective, islands that include part of important and restorable loads are formed because the DGs’ capacity cannot ensure an entire restoration of the outage areas. Finally, DPSO is used to obtain the optimal solution of islanding strategy and the state sequence matrix is utilized to represent the solution space. It is believed that this work will provide some useful insight into improving the power system resiliency in the face of extreme events such as natural or man-made disasters
    • …
    corecore