314 research outputs found

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Active Training and Assistance Device for an Individually Adaptable Strength and Coordination Training

    Get PDF
    Das Altern der Weltbevölkerung, insbesondere in der westlichen Welt, stellt die Menschheit vor eine große Herausforderung. Zu erwarten sind erhebliche Auswirkungen auf den Gesundheitssektor, der im Hinblick auf eine steigende Anzahl von Menschen mit altersbedingtem körperlichem und kognitivem Abbau und dem damit erhöhten BedĂŒrfnis einer individuellen Versorgung vor einer großen Aufgabe steht. Insbesondere im letzten Jahrhundert wurden viele wissenschaftliche Anstrengungen unternommen, um Ursache und Entwicklung altersbedingter Erkrankungen, ihr Voranschreiten und mögliche Behandlungen, zu verstehen. Die derzeitigen Modelle zeigen, dass der entscheidende Faktor fĂŒr die Entwicklung solcher Krankheiten der Mangel an sensorischen und motorischen EinflĂŒssen ist, diese wiederum sind das Ergebnis verringerter MobilitĂ€t und immer weniger neuer Erfahrungen. Eine Vielzahl von Studien zeigt, dass erhöhte körperliche AktivitĂ€t einen positiven Effekt auf den Allgemeinzustand von Ă€lteren Erwachsenen mit leichten kognitiven BeeintrĂ€chtigungen und den Menschen in deren unmittelbarer Umgebung hat. Diese Arbeit zielt darauf ab, Ă€lteren Menschen die Möglichkeit zu bieten, eigenstĂ€ndig und sicher ein individuelles körperliches Training zu absolvieren. In den letzten zwei Jahrzehnten hat die Forschung im Bereich der robotischen Bewegungsassistenten, auch Smarte Rollatoren genannt, den Fokus auf die sensorische und kognitive UnterstĂŒtzung fĂŒr Ă€ltere und eingeschrĂ€nkte Personen gesetzt. Durch zahlreiche BemĂŒhungen entstand eine Vielzahl von AnsĂ€tzen zur Mensch-Rollator-Interaktion, alle mit dem Ziel, Bewegung und Navigation innerhalb der Umgebung zu unterstĂŒtzen. Aber trotz allem sind Trainingsmöglichkeiten zur motorischen Aktivierung mittels Smarter Rollatoren noch nicht erforscht. Im Gegensatz zu manchen Smarten Rollatoren, die den Fokus auf Rehabilitationsmöglichkeiten fĂŒr eine bereits fortgeschrittene Krankheit setzen, zielt diese Arbeit darauf ab, kognitive BeeintrĂ€chtigungen in einem frĂŒhen Stadium soweit wie möglich zu verlangsamen, damit die körperliche und mentale Fitness des Nutzers so lang wie möglich aufrechterhalten bleibt. Um die Idee eines solchen Trainings zu ĂŒberprĂŒfen, wurde ein Prototyp-GerĂ€t namens RoboTrainer-Prototyp entworfen, eine mobile Roboter-Plattform, die mit einem zusĂ€tzlichen Kraft-Momente-Sensor und einem Fahrradlenker als Eingabe-Schnittstelle ausgestattet wurde. Das Training beinhaltet vordefinierte Trainingspfade mit Markierungen am Boden, entlang derer der Nutzer das GerĂ€t navigieren soll. Der Prototyp benutzt eine Admittanzgleichung, um seine Geschwindigkeit anhand der Eingabe des Nutzers zu berechnen. Desweiteren leitet das GerĂ€t gezielte Regelungsaktionen bzw. VerhaltensĂ€nderungen des Roboters ein, um das Training herausfordernd zu gestalten. Die Pilotstudie, die mit zehn Ă€lteren Erwachsenen mit beginnender Demenz durchgefĂŒhrt wurde, zeigte eine signifikante Steigerung ihrer InteraktionsfĂ€higkeit mit diesem GerĂ€t. Sie bewies ebenfalls den Nutzen von Regelungsaktionen, um die KomplexitĂ€t des Trainings stĂ€ndig neu anzupassen. Obwohl diese Studie die DurchfĂŒhrbarkeit des Trainings zeigte, waren GrundflĂ€che und mechanische StabilitĂ€t des RoboTrainer-Prototyps suboptimal. Deswegen fokussiert sich der zweite Teil dieser Arbeit darauf, ein neues GerĂ€t zu entwerfen, um die Nachteile des Prototyps zu beheben. Neben einer erhöhten mechanischen StabilitĂ€t, ermöglicht der RoboTrainer v2 eine Anpassung seiner GrundflĂ€che. Dieses spezifische Merkmal der Smarten Rollatoren dient vor allem dazu, die UnterstĂŒtzungsflĂ€che fĂŒr den Benutzer anzupassen. Das ermöglicht einerseits ein agiles Training mit gesunden Personen und andererseits Rehabilitations-Szenarien bei Menschen, die körperliche UnterstĂŒtzung benötigen. Der Regelungsansatz fĂŒr den RoboTrainer v2 erweitert den Admittanzregler des Prototypen durch drei adaptive Strategien. Die erste ist die Anpassung der SensitivitĂ€t an die Eingabe des Nutzers, abhĂ€ngig von der StabilitĂ€t des Nutzer-Rollater-Systems, welche Schwankungen verhindert, die dann passieren können, wenn die HĂ€nde des Nutzers versteifen. Die zweite Anpassung beinhaltet eine neuartige nicht-lineare, geschwindigkeits-basierende Änderung der Admittanz-Parameter, um die Wendigkeit des Rollators zu erhöhen. Die dritte Anpassung erfolgt vor dem eigentlichen Training in einem Parametrierungsprozess, wo nutzereigene InteraktionskrĂ€fte gemessen werden, um individuelle Reglerkonstanten fein abzustimmen und zu berechnen. Die Regelungsaktionen sind VerhaltensĂ€nderungen des GerĂ€tes, die als Bausteine fĂŒr unterstĂŒtzende und herausfordernde Trainingseinheiten mit dem RoboTrainer dienen. Sie nutzen das virtuelle Kraft-Feld-Konzept, um die Bewegung des GerĂ€tes in der Trainingsumgebung zu beeinflussen. Die Bewegung des RoboTrainers wird in der Gesamtumgebung durch globale oder, in bestimmten Teilbereichen, durch rĂ€umliche Aktionen beeinflusst. Die Regelungsaktionen erhalten die Absicht des Nutzers aufrecht, in dem sie eine unabhĂ€ngige Admittanzdynamik implementieren, um deren Einfluss auf die Geschwindigkeit des RoboTrainers zu berechnen. Dies ermöglicht die entscheidende Trennung von ReglerzustĂ€nden, um wĂ€hrend des Trainings passive und sichere Interaktionen mit dem GerĂ€t zu erreichen. Die oben genannten BeitrĂ€ge wurden getrennt ausgewertet und in zwei Studien mit jeweils 22 bzw. 13 jungen, gesunden Erwachsenen untersucht. Diese Studien ermöglichen einen umfassenden Einblick in die ZusammenhĂ€nge zwischen unterschiedlichen FunktionalitĂ€ten und deren Einfluss auf die Nutzer. Sie bestĂ€tigen den gesamten Ansatz, sowie die gemachten Vermutungen im Hinblick auf die Gestaltung einzelner Teile dieser Arbeit. Die Einzelergebnisse dieser Arbeit resultieren in einem neuartigen ForschungsgerĂ€t fĂŒr physische Mensch-Roboter-Interaktionen wĂ€hrend des Trainings mit Erwachsenen. ZukĂŒnftige Forschungen mit dem RoboTrainer ebnen den Weg fĂŒr Smarte Rollatoren als Hilfe fĂŒr die Gesellschaft im Hinblick auf den bevorstehenden demographischen Wandel

    Hierarchical Shared Control of Cane-Type Walking-Aid Robot

    Get PDF

    Robotics 2010

    Get PDF
    Without a doubt, robotics has made an incredible progress over the last decades. The vision of developing, designing and creating technical systems that help humans to achieve hard and complex tasks, has intelligently led to an incredible variety of solutions. There are barely technical fields that could exhibit more interdisciplinary interconnections like robotics. This fact is generated by highly complex challenges imposed by robotic systems, especially the requirement on intelligent and autonomous operation. This book tries to give an insight into the evolutionary process that takes place in robotics. It provides articles covering a wide range of this exciting area. The progress of technical challenges and concepts may illuminate the relationship between developments that seem to be completely different at first sight. The robotics remains an exciting scientific and engineering field. The community looks optimistically ahead and also looks forward for the future challenges and new development

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study

    OBSERVER-BASED-CONTROLLER FOR INVERTED PENDULUM MODEL

    Get PDF
    This paper presents a state space control technique for inverted pendulum system. The system is a common classical control problem that has been widely used to test multiple control algorithms because of its nonlinear and unstable behavior. Full state feedback based on pole placement and optimal control is applied to the inverted pendulum system to achieve desired design specification which are 4 seconds settling time and 5% overshoot. The simulation and optimization of the full state feedback controller based on pole placement and optimal control techniques as well as the performance comparison between these techniques is described comprehensively. The comparison is made to choose the most suitable technique for the system that have the best trade-off between settling time and overshoot. Besides that, the observer design is analyzed to see the effect of pole location and noise present in the system

    A Review of Resonant Converter Control Techniques and The Performances

    Get PDF
    paper first discusses each control technique and then gives experimental results and/or performance to highlights their merits. The resonant converter used as a case study is not specified to just single topology instead it used few topologies such as series-parallel resonant converter (SPRC), LCC resonant converter and parallel resonant converter (PRC). On the other hand, the control techniques presented in this paper are self-sustained phase shift modulation (SSPSM) control, self-oscillating power factor control, magnetic control and the H-∞ robust control technique

    State-Feedback Controller Based on Pole Placement Technique for Inverted Pendulum System

    Get PDF
    This paper presents a state space control technique for inverted pendulum system using simulation and real experiment via MATLAB/SIMULINK software. The inverted pendulum is difficult system to control in the field of control engineering. It is also one of the most important classical control system problems because of its nonlinear characteristics and unstable system. It has three main problems that always appear in control application which are nonlinear system, unstable and non-minimumbehavior phase system. This project will apply state feedback controller based on pole placement technique which is capable in stabilizing the practical based inverted pendulum at vertical position. Desired design specifications which are 4 seconds settling time and 5 % overshoot is needed to apply in full state feedback controller based on pole placement technique. First of all, the mathematical model of an inverted pendulum system is derived to obtain the state space representation of the system. Then, the design phase of the State-Feedback Controller can be conducted after linearization technique is performed to the nonlinear equation with the aid of mathematical aided software such as Mathcad. After that, the design is simulated using MATLAB/Simulink software. The controller design of the inverted pendulum system is verified using simulation and experiment test. Finally the controller design is compared with PID controller for benchmarking purpose

    A Review of Resonant Converter Control Techniques and The Performances

    Get PDF
    paper first discusses each control technique and then gives experimental results and/or performance to highlights their merits. The resonant converter used as a case study is not specified to just single topology instead it used few topologies such as series-parallel resonant converter (SPRC), LCC resonant converter and parallel resonant converter (PRC). On the other hand, the control techniques presented in this paper are self-sustained phase shift modulation (SSPSM) control, self-oscillating power factor control, magnetic control and the H-∞ robust control technique

    Advances in Human-Robot Interaction

    Get PDF
    Rapid advances in the field of robotics have made it possible to use robots not just in industrial automation but also in entertainment, rehabilitation, and home service. Since robots will likely affect many aspects of human existence, fundamental questions of human-robot interaction must be formulated and, if at all possible, resolved. Some of these questions are addressed in this collection of papers by leading HRI researchers
    • 

    corecore