14,769 research outputs found

    Research and development for Onboard Navigation (ONAV) ground based expert/trainer system: Preliminary test plan

    Get PDF
    The test plan for the onboard navigation (ONAV) expert system is described. Levels of testing are identified and the contributing role of each level for ensuring reliability is described. Also, the objectives of each type of test are identified and a summary of the test methods and the type of testing environment to be used is included. The ONAV expert system testing effort utilizes a multi-level verification approach. Five levels of testing are performed in essentially a serial manner: (1) individual rules, (2) ordered and unordered functional groups, (3) interface rules, (4) system tests, and (5) user tests. The intent is to catch the full range of both programming errors common to traditional programming and those errors characteristic of expert systems including factbase organization and inference engine interactions

    Real-time simulations to evaluate the RPAS integration in shared airspace

    Get PDF
    This paper presents the work done during the first year in the WP-E project ERAINT (Evaluation of the RPAS-ATM Interaction in Non-Segregated Airspace) that intends to evaluate by means of human-in-the-loop real-time simulations the interaction between a Remotely Piloted Aircraft System (RPAS) and the Air Traffic Management (ATM) when a Remotely Piloted Aircraft (RPA) is being operated in shared airspace. This interaction will be evaluated from three different perspectives. First, the separation management, its results are presented in this paper. Secondly, during the next year, the contingency management, also including loss of link situations and, lastly, the capacity impact of such operations in the overall ATM system. The used simulation infrastructure allows to simulate realistic exercises from both the RPAS Pilot-in-Command (PiC) and the Air Traffic Controller (ATCo) perspectives. Moreover, it permits to analyze the actual workload of the ATC and to evaluate several support tools and different RPAS levels of automation from the PiC and ATC sides. The simulation results and the usefulness of the support tools are presented for each selected concept of operations.Peer ReviewedPostprint (published version

    Design and Development of Widgets for a Corporate Security Application

    Get PDF
    Aquest projecte es lliura com a Treball Final del Grau d'Enginyeria Informàtica de la Facultat d'Informàtica de Barcelona. L'objectiu és posar en pràctica els coneixements adquirits durant l'especialitat d'enginyeria del Software. El projecte consisteix a dissenyar i desenvolupar widgets per a una aplicació móvil corporativa de seguretat que permet als usuaris interaccionar amb una de les funcionalitats principals de la aplicació, sempre mantenint la perspectiva de la seguretat i la usabilitat.This project is delivered as the Bachelor Thesis of the Informatics Engineering Degree of the Barcelona Faculty of Computer Science. The objective is to put into practice the knowledge acquired during the Software engineering specialty. The project consists of designing and developing widgets for a corporate security mobile application that allows users to interact with one of the main functionalities of the application, always maintaining the perspective of security and usability

    Integrated cockpit for A-129

    Get PDF
    Weight, size, and mission requirements for the A-129 mandated an integrated system approach for the crew/cockpit interface design. Instead of the usual multitude of cockpit controls, indicators, gauges, and lights, the primary crew interface is a single multifunction keyboard and one or more multifunction CRT display units. This cockpit design approach imposed unusual constraints upon the system architecture to overcome the inherent information access limitations of a data input/output window that was restricted by the available space. The conceptual approach and resulting design of the A-129 cockpit with the intent to enhance the development of cockpit standardization are described

    Collaborative Gaze Channelling for Improved Cooperation During Robotic Assisted Surgery

    Get PDF
    The use of multiple robots for performing complex tasks is becoming a common practice for many robot applications. When different operators are involved, effective cooperation with anticipated manoeuvres is important for seamless, synergistic control of all the end-effectors. In this paper, the concept of Collaborative Gaze Channelling (CGC) is presented for improved control of surgical robots for a shared task. Through eye tracking, the fixations of each operator are monitored and presented in a shared surgical workspace. CGC permits remote or physically separated collaborators to share their intention by visualising the eye gaze of their counterparts, and thus recovers, to a certain extent, the information of mutual intent that we rely upon in a vis-à-vis working setting. In this study, the efficiency of surgical manipulation with and without CGC for controlling a pair of bimanual surgical robots is evaluated by analysing the level of coordination of two independent operators. Fitts' law is used to compare the quality of movement with or without CGC. A total of 40 subjects have been recruited for this study and the results show that the proposed CGC framework exhibits significant improvement (p<0.05) on all the motion indices used for quality assessment. This study demonstrates that visual guidance is an implicit yet effective way of communication during collaborative tasks for robotic surgery. Detailed experimental validation results demonstrate the potential clinical value of the proposed CGC framework. © 2012 Biomedical Engineering Society.link_to_subscribed_fulltex

    Cockpit data management

    Get PDF
    This study is a continuation of an FAA effort to alleviate the growing problems of assimilating and managing the flow of data and flight related information in the air transport flight deck. The nature and extent of known pilot interface problems arising from new NAS data management programs were determined by a comparative timeline analysis of crew tasking requirements. A baseline of crew tasking requirements was established for conventional and advanced flight decks operating in the current NAS environment and then compared to the requirements for operation in a future NAS environment emphasizing Mode-S data link and TCAS. Results showed that a CDU-based pilot interface for Mode-S data link substantially increased crew visual activity as compared to the baseline. It was concluded that alternative means of crew interface should be available during high visual workload phases of flight. Results for TCAS implementation showed substantial visual and motor tasking increases, and that there was little available time between crew tasks during a TCAS encounter. It was concluded that additional research should be undertaken to address issues of ATC coordination and the relative benefit of high workload TCAS features

    ロボットナビゲーションにおける人間への意図伝達に関する研究

    Get PDF
    早大学位記番号:新7327早稲田大

    Aircraft electromagnetic compatibility

    Get PDF
    Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting

    I-Interaction: An Intelligent In-Vehicle User Interaction Model

    Full text link
    The automobile is always a point of interest where new technology has been deployed. Because of this interest, human-vehicle interaction has been an appealing area for much research in recent years. The current in-vehicle design has been improved but still possesses some of the design from the traditional interaction style. In this paper, we propose a new user-oriented model for in-vehicle interaction model known as i-Interaction. The i-Interaction model provides user with an intuitive approach to interact with the In-Vehicle Information System (IVIS) by the keypad entry. It is the intent that the proposed usability testing for this model will help improve the way research and development is implemented from this topic. This model does not only provide the user with a direct interaction in vehicles but also introduce a new prospective that other research has not addressed.Comment: 11 pages, 4 figure
    corecore