437 research outputs found

    Intensity-only optical compressive imaging using a multiply scattering material and a double phase retrieval approach

    Full text link
    In this paper, the problem of compressive imaging is addressed using natural randomization by means of a multiply scattering medium. To utilize the medium in this way, its corresponding transmission matrix must be estimated. To calibrate the imager, we use a digital micromirror device (DMD) as a simple, cheap, and high-resolution binary intensity modulator. We propose a phase retrieval algorithm which is well adapted to intensity-only measurements on the camera, and to the input binary intensity patterns, both to estimate the complex transmission matrix as well as image reconstruction. We demonstrate promising experimental results for the proposed algorithm using the MNIST dataset of handwritten digits as example images

    Robust phase retrieval with the swept approximate message passing (prSAMP) algorithm

    Full text link
    In phase retrieval, the goal is to recover a complex signal from the magnitude of its linear measurements. While many well-known algorithms guarantee deterministic recovery of the unknown signal using i.i.d. random measurement matrices, they suffer serious convergence issues some ill-conditioned matrices. As an example, this happens in optical imagers using binary intensity-only spatial light modulators to shape the input wavefront. The problem of ill-conditioned measurement matrices has also been a topic of interest for compressed sensing researchers during the past decade. In this paper, using recent advances in generic compressed sensing, we propose a new phase retrieval algorithm that well-adopts for both Gaussian i.i.d. and binary matrices using both sparse and dense input signals. This algorithm is also robust to the strong noise levels found in some imaging applications

    Online learning of the transfer matrix of dynamic scattering media: wavefront shaping meets multidimensional time series

    Full text link
    Thanks to the latest advancements in wavefront shaping, optical methods have proven crucial to achieve imaging and control light in multiply scattering media, like biological tissues. However, the stability times of living biological specimens often prevent such methods from gaining insights into relevant functioning mechanisms in cellular and organ systems. Here we present a recursive and online optimization routine, borrowed from time series analysis, to optimally track the transfer matrix of dynamic scattering media over arbitrarily long timescales. While preserving the advantages of both optimization-based routines and transfer-matrix measurements, it operates in a memory-efficient manner. Because it can be readily implemented in existing wavefront shaping setups, featuring amplitude and/or phase modulation and phase-resolved or intensity-only acquisition, it paves the way for efficient optical investigations of living biological specimens

    Image transmission through dynamic scattering media by single-pixel photodetection

    Get PDF
    Smart control of light propagation through highly scattering media is a much desired goal with major technological implications. Since interaction of light with highly scattering media results in partial or complete depletion of ballistic photons, it is in principle impossible to transmit images through distances longer than the extinction length. Nevertheless, different methods for image transmission, focusing, and imaging through scattering media by means of wavefront control have been published over the past few years. In this paper we show that single-pixel optical systems, based on compressive detection, can also overcome the fundamental limitation imposed by multiple scattering to successfully transmit information. But, in contrast with the recently introduced schemes that use the transmission matrix technique, our approach does not require any a-priori calibration process that ultimately makes the present method suitable to use with dynamic scattering media. This represents an advantage over previous methods that rely on optical feedback wavefront control, especially for short speckle decorrelation times.We thank Víctor Torres-Company at the Chalmers University and Peter Török at the Imperial College of London for useful discussions and for reading the manuscript. This work was supported in part from MINECO (grants CSD2007-00013 and FIS2010-15746), Generalitat Valenciana (grants PROMETEO2012-021 and ISIC 2012/013), and the Universitat Jaume I (P1-1B2012-55). E.I. and F.S. were partially supported by a Generalitat Valenciana research fellowship

    Nonconvex optimization for optimum retrieval of the transmission matrix of a multimode fiber

    Full text link
    Transmission matrix (TM) allows light control through complex media such as multimode fibers (MMFs), gaining great attention in areas like biophotonics over the past decade. The measurement of a complex-valued TM is highly desired as it supports full modulation of the light field, yet demanding as the holographic setup is usually entailed. Efforts have been taken to retrieve a TM directly from intensity measurements with several representative phase retrieval algorithms, which still see limitations like slow or suboptimum recovery, especially under noisy environment. Here, a modified non-convex optimization approach is proposed. Through numerical evaluations, it shows that the nonconvex method offers an optimum efficiency of focusing with less running time or sampling rate. The comparative test under different signal-to-noise levels further indicates its improved robustness for TM retrieval. Experimentally, the optimum retrieval of the TM of a MMF is collectively validated by multiple groups of single-spot and multi-spot focusing demonstrations. Focus scanning on the working plane of the MMF is also conducted where our method achieves 93.6% efficiency of the gold standard holography method when the sampling rate is 8. Based on the recovered TM, image transmission through the MMF with high fidelity can be realized via another phase retrieval. Thanks to parallel operation and GPU acceleration, the nonconvex approach can retrieve an 8685×\times1024 TM (sampling rate=8) with 42.3 s on a regular computer. In brief, the proposed method provides optimum efficiency and fast implementation for TM retrieval, which will facilitate wide applications in deep-tissue optical imaging, manipulation and treatment
    • …
    corecore