28 research outputs found

    Exploiting the bimodality of speech in the cocktail party problem

    Get PDF
    The cocktail party problem is one of following a conversation in a crowded room where there are many competing sound sources, such as the voices of other speakers or music. To address this problem using computers, digital signal processing solutions commonly use blind source separation (BSS) which aims to separate all the original sources (voices) from the mixture simultaneously. Traditionally, BSS methods have relied on information derived from the mixture of sources to separate the mixture into its constituent elements. However, the human auditory system is well adapted to handle the cocktail party scenario, using both auditory and visual information to follow (or hold) a conversation in a such an environment. This thesis focuses on using visual information of the speakers in a cocktail party like scenario to aid in improving the performance of BSS. There are several useful applications of such technology, for example: a pre-processing step for a speech recognition system, teleconferencing or security surveillance. The visual information used in this thesis is derived from the speaker's mouth region, as it is the most visible component of speech production. Initial research presented in this thesis considers a joint statistical model of audio and visual features, which is used to assist in control ling the convergence behaviour of a BSS algorithm. The results of using the statistical models are compared to using the raw audio information alone and it is shown that the inclusion of visual information greatly improves its convergence behaviour. Further research focuses on using the speaker's mouth region to identify periods of time when the speaker is silent through the development of a visual voice activity detector (V-VAD) (i.e. voice activity detection using visual information alone). This information can be used in many different ways to simplify the BSS process. To this end, two novel V-VADs were developed and tested within a BSS framework, which result in significantly improved intelligibility of the separated source associated with the V-VAD output. Thus the research presented in this thesis confirms the viability of using visual information to improve solutions to the cocktail party problem.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Exploiting the bimodality of speech in the cocktail party problem

    Get PDF
    The cocktail party problem is one of following a conversation in a crowded room where there are many competing sound sources, such as the voices of other speakers or music. To address this problem using computers, digital signal processing solutions commonly use blind source separation (BSS) which aims to separate all the original sources (voices) from the mixture simultaneously. Traditionally, BSS methods have relied on information derived from the mixture of sources to separate the mixture into its constituent elements. However, the human auditory system is well adapted to handle the cocktail party scenario, using both auditory and visual information to follow (or hold) a conversation in a such an environment. This thesis focuses on using visual information of the speakers in a cocktail party like scenario to aid in improving the performance of BSS. There are several useful applications of such technology, for example: a pre-processing step for a speech recognition system, teleconferencing or security surveillance. The visual information used in this thesis is derived from the speaker's mouth region, as it is the most visible component of speech production. Initial research presented in this thesis considers a joint statistical model of audio and visual features, which is used to assist in control ling the convergence behaviour of a BSS algorithm. The results of using the statistical models are compared to using the raw audio information alone and it is shown that the inclusion of visual information greatly improves its convergence behaviour. Further research focuses on using the speaker's mouth region to identify periods of time when the speaker is silent through the development of a visual voice activity detector (V-VAD) (i.e. voice activity detection using visual information alone). This information can be used in many different ways to simplify the BSS process. To this end, two novel V-VADs were developed and tested within a BSS framework, which result in significantly improved intelligibility of the separated source associated with the V-VAD output. Thus the research presented in this thesis confirms the viability of using visual information to improve solutions to the cocktail party problem.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Exploiting the bimodality of speech in the cocktail party problem

    Get PDF
    The cocktail party problem is one of following a conversation in a crowded room where there are many competing sound sources, such as the voices of other speakers or music. To address this problem using computers, digital signal processing solutions commonly use blind source separation (BSS) which aims to separate all the original sources (voices) from the mixture simultaneously. Traditionally, BSS methods have relied on information derived from the mixture of sources to separate the mixture into its constituent elements. However, the human auditory system is well adapted to handle the cocktail party scenario, using both auditory and visual information to follow (or hold) a conversation in a such an environment. This thesis focuses on using visual information of the speakers in a cocktail party like scenario to aid in improving the performance of BSS. There are several useful applications of such technology, for example: a pre-processing step for a speech recognition system, teleconferencing or security surveillance. The visual information used in this thesis is derived from the speaker's mouth region, as it is the most visible component of speech production. Initial research presented in this thesis considers a joint statistical model of audio and visual features, which is used to assist in control ling the convergence behaviour of a BSS algorithm. The results of using the statistical models are compared to using the raw audio information alone and it is shown that the inclusion of visual information greatly improves its convergence behaviour. Further research focuses on using the speaker's mouth region to identify periods of time when the speaker is silent through the development of a visual voice activity detector (V-VAD) (i.e. voice activity detection using visual information alone). This information can be used in many different ways to simplify the BSS process. To this end, two novel V-VADs were developed and tested within a BSS framework, which result in significantly improved intelligibility of the separated source associated with the V-VAD output. Thus the research presented in this thesis confirms the viability of using visual information to improve solutions to the cocktail party problem

    Online Audio-Visual Multi-Source Tracking and Separation: A Labeled Random Finite Set Approach

    Get PDF
    The dissertation proposes an online solution for separating an unknown and time-varying number of moving sources using audio and visual data. The random finite set framework is used for the modeling and fusion of audio and visual data. This enables an online tracking algorithm to estimate the source positions and identities for each time point. With this information, a set of beamformers can be designed to separate each desired source and suppress the interfering sources

    SIGNAL TRANSFORMATIONS FOR IMPROVING INFORMATION REPRESENTATION, FEATURE EXTRACTION AND SOURCE SEPARATION

    Get PDF
    Questa tesi riguarda nuovi metodi di rappresentazione del segnale nel dominio tempo-frequenza, tali da mostrare le informazioni ricercate come dimensioni esplicite di un nuovo spazio. In particolare due trasformate sono introdotte: lo Spazio di Miscelazione Bivariato (Bivariate Mixture Space) e il Campo della Struttura Spettro-Temporale (Spectro-Temporal Structure-Field). La prima trasformata mira a evidenziare le componenti latenti di un segnale bivariato basandosi sul comportamento di ogni componente frequenziale (ad esempio a fini di separazione delle sorgenti); la seconda trasformata mira invece all'incapsulamento di informazioni relative al vicinato di un punto in R^2 in un vettore associato al punto stesso, tale da descrivere alcune propriet\ue0 topologiche della funzione di partenza. Nel dominio dell'elaborazione digitale del segnale audio, il Bivariate Mixture Space pu\uf2 essere interpretato come un modo di investigare lo spazio stereofonico per operazioni di separazione delle sorgenti o di estrazione di informazioni, mentre lo Spectro-Temporal Structure-Field pu\uf2 essere usato per ispezionare lo spazio spettro-temporale (segregare suoni percussivi da suoni intonati o tracciae modulazioni di frequenza). Queste trasformate sono studiate e testate anche in relazione allo stato del'arte in campi come la separazione delle sorgenti, l'estrazione di informazioni e la visualizzazione dei dati. Nel campo dell'informatica applicata al suono, queste tecniche mirano al miglioramento della rappresentazione del segnale nel dominio tempo-frequenza, in modo tale da rendere possibile l'esplorazione dello spettro anche in spazi alternativi, quali il panorama stereofonico o una dimensione virtuale che separa gli aspetti percussivi da quelli intonati.This thesis is about new methods of signal representation in time-frequency domain, so that required information is rendered as explicit dimensions in a new space. In particular two transformations are presented: Bivariate Mixture Space and Spectro-Temporal Structure-Field. The former transform aims at highlighting latent components of a bivariate signal based on the behaviour of each frequency base (e.g. for source separation purposes), whereas the latter aims at folding neighbourhood information of each point of a R^2 function into a vector, so as to describe some topological properties of the function. In the audio signal processing domain, the Bivariate Mixture Space can be interpreted as a way to investigate the stereophonic space for source separation and Music Information Retrieval tasks, whereas the Spectro-Temporal Structure-Field can be used to inspect spectro-temporal dimension (segregate pitched vs. percussive sounds or track pitch modulations). These transformations are investigated and tested against state-of-the-art techniques in fields such as source separation, information retrieval and data visualization. In the field of sound and music computing, these techniques aim at improving the frequency domain representation of signals such that the exploration of the spectrum can be achieved also in alternative spaces like the stereophonic panorama or a virtual percussive vs. pitched dimension

    An Overview of Deep-Learning-Based Audio-Visual Speech Enhancement and Separation

    Get PDF
    Speech enhancement and speech separation are two related tasks, whose purpose is to extract either one or more target speech signals, respectively, from a mixture of sounds generated by several sources. Traditionally, these tasks have been tackled using signal processing and machine learning techniques applied to the available acoustic signals. Since the visual aspect of speech is essentially unaffected by the acoustic environment, visual information from the target speakers, such as lip movements and facial expressions, has also been used for speech enhancement and speech separation systems. In order to efficiently fuse acoustic and visual information, researchers have exploited the flexibility of data-driven approaches, specifically deep learning, achieving strong performance. The ceaseless proposal of a large number of techniques to extract features and fuse multimodal information has highlighted the need for an overview that comprehensively describes and discusses audio-visual speech enhancement and separation based on deep learning. In this paper, we provide a systematic survey of this research topic, focusing on the main elements that characterise the systems in the literature: acoustic features; visual features; deep learning methods; fusion techniques; training targets and objective functions. In addition, we review deep-learning-based methods for speech reconstruction from silent videos and audio-visual sound source separation for non-speech signals, since these methods can be more or less directly applied to audio-visual speech enhancement and separation. Finally, we survey commonly employed audio-visual speech datasets, given their central role in the development of data-driven approaches, and evaluation methods, because they are generally used to compare different systems and determine their performance

    Biometric Systems

    Get PDF
    Biometric authentication has been widely used for access control and security systems over the past few years. The purpose of this book is to provide the readers with life cycle of different biometric authentication systems from their design and development to qualification and final application. The major systems discussed in this book include fingerprint identification, face recognition, iris segmentation and classification, signature verification and other miscellaneous systems which describe management policies of biometrics, reliability measures, pressure based typing and signature verification, bio-chemical systems and behavioral characteristics. In summary, this book provides the students and the researchers with different approaches to develop biometric authentication systems and at the same time includes state-of-the-art approaches in their design and development. The approaches have been thoroughly tested on standard databases and in real world applications

    Reports on industrial information technology. Vol. 12

    Get PDF
    The 12th volume of Reports on Industrial Information Technology presents some selected results of research achieved at the Institute of Industrial Information Technology during the last two years. These results have contributed to many cooperative projects with partners from academia and industry and cover current research interests including signal and image processing, pattern recognition, distributed systems, powerline communications, automotive applications, and robotics

    ACOUSTIC LOCALIZATION TECHNIQUES FOR APPLICATION IN NEAR-SHORE ARCTIC ENVIRONMENTS

    Get PDF
    The Arctic environment has undergone significant change in recent years. Multi-year ice is no longer prevalent in the Arctic. Instead, Arctic ice melts during summer months and re-freezes each winter. First-year ice, in comparison to multi-year ice, is different in terms of its acoustic properties. Therefore, acoustic propagation models of the Arctic may no longer be valid. The open water in the Arctic for longer time periods during the year invites anthropogenic traffic such as civilian tourism, industrial shipping, natural resource exploration, and military exercises. It is important to understand sound propagation in the first-year ice environment, especially in near-shore and shallow-water regions, where anthropogenic sources may be prevalent. It is also important to understand how to detect, identify, and track the anthropogenic sources in these environments in the absence of large acoustic sensory arrays. The goals of this dissertation are twofold: 1) Provide experimental transmission loss (TL) data for the Arctic environment as it now exists, that it may be used to validate new propagation models, and 2) Develop improved understanding of acoustic vector sensor (AVS) performance in real-world applications such as the first-year Arctic environment. Underwater and atmospheric acoustic TL have been measured in the Arctic environment. Ray tracing and parabolic equation simulations have been used for comparison to the TL data. Generally good agreement is observed between the experimental data and simulations, with some discrepancies. These discrepancies may be eliminated in the future with the development of improved models. Experiments have been conducted with underwater pa and atmospheric pp AVS to track mechanical noise sources in real-world environments with various frequency content and signal to noise ratio (SNR). A moving standard deviation (MSD) processing routine has been developed for use with AVS. The MSD processing routine is shown to be superior to direct integration or averaging of intensity spectra for direction of arrival (DOA) estimation. DOA error has been shown to be dependent on ground-reflected paths for pp AVS with analytical models. Underwater AVS have been shown to be feasible to track on-ice sources and atmospheric AVS have been shown feasible to track ground vehicle sources
    corecore