25 research outputs found

    Robust Ensemble Classification Methodology for I123-Ioflupane SPECT Images and Multiple Heterogeneous Biomarkers in the Diagnosis of Parkinson’s Disease

    Get PDF
    In last years, several approaches to develop an effective Computer-Aided-Diagnosis (CAD) system for Parkinson’s Disease (PD) have been proposed. Most of these methods have focused almost exclusively on brain images through the use of Machine-Learning algorithms suitable to characterize structural or functional patterns. Those patterns provide enough information about the status and/or the progression at intermediate and advanced stages of Parkinson’s Disease. Nevertheless this information could be insufficient at early stages of the pathology. The Parkinson’s ProgressionMarkers Initiative (PPMI) database includes neurological images along with multiple biomedical tests. This information opens up the possibility of comparing different biomarker classification results. As data come from heterogeneous sources, it is expected that we could include some of these biomarkers in order to obtain new information about the pathology. Based on that idea, this work presents an Ensemble Classification model with Performance Weighting. This proposal has been tested comparing Healthy Control subjects (HC) vs. patients with PD (considering both PD and SWEDD labeled subjects as the same class). This model combines several Support-Vector-Machine (SVM) with linear kernel classifiers for different biomedical group of tests—including CerebroSpinal Fluid (CSF), RNA, and Serum tests—and pre-processed neuroimages features (Voxels-As-Features and a list of definedMorphological Features) fromPPMI database subjects. The proposed methodology makes use of all data sources and selects the most discriminant features (mainly from neuroimages). Using this performance-weighted ensemble classification model, classification results up to 96% were obtained.This work was supported by the MINECO/FEDER under the TEC2015-64718-R project and the Ministry of Economy, Innovation, Science and Employment of the Junta de Andalucía under the Excellence Project P11-TIC-7103

    Morphological Characterization of Functional Brain Imaging by Isosurface Analysis in Parkinson’s Disease.

    Get PDF
    Finding new biomarkers to model Parkinson’s Disease (PD) is a challenge not only to help discerning between Healthy Control (HC) subjects and patients with potential PD, but also as a way to measure quantitatively the loss of dopaminergic neurons mainly concentrated at substantia nigra. Within this context, the work presented here tries to provide a set of imaging features based on morphological characteristics extracted from I[123]-Ioflupane SPECT scans to discern between HC and PD participants in a balanced set of 386 scans from Parkinson’s Progression Markers Initiative (PPMI) database. These features, obtained from isosurfaces of each scan at different intensity levels, have been classified through the use of classical Machine Learning classifiers such as Support-Vector-Machines (SVM) or Na¨ıve Bayesian and compared with the results obtained using a Multi-Layer Perceptron (MLP). The proposed system, based on a Mann-Whitney-Wilcoxon U-Test for feature selection and the SVM approach, yielded a 97.04% balanced accuracy when the performance was evaluated using a 10-fold cross-validation. This proves the reliability of these biomarkers, especially those related to sphericity, center of mass, number of vertices, 2D-projected perimeter or the 2D-projected eccentricity; among others, but including both internal and external isosurfaces.This work was supported by the MINECO/FEDER under the RTI2018-098913-B-I00 and PGC2018- 098813-B-C32 projects and the General Secretariat of Universities, Research and Technology, Junta de Andalucía under the Excellence FEDER Project ATIC-117-UGR18

    Clinical correlates and advanced processing of the dopamine transporter spect - applications in parkinsonism.

    Get PDF
    La visualización del transportador de dopamina (DAT) a través del SPECT con [123I]FP-CIT es una prueba de imagen ampliamente usada en el diagnóstico de la enfermedad de Parkinson (EP) y otros trastornos del movimiento que cursan con síntomas parkinsonianos. Dicha imagen permite visualizar y cuantificar los niveles de DAT en el estriado y sus regiones putamen y caudado, y es por tanto una herramienta útil para evaluar in-vivo el estado de las terminales presinápticos dopaminérgicos de la vía nigroestriada. En la práctica clínica es comúnmente utilizado para la diferenciación de parkinsonismos neurodegenerativos con afectación presináptica y otros trastornos del movimiento con síntomas similares pero sin afectación presináptica como el temblor esencial. En la imagen se suele observar un patrón de degeneración postero-anterior que se corresponde con la progresión de síntomas en la EP debido a la afectación progresiva de los circuitos de los ganglios basales. De hecho, numerosos estudios han mostrado que la falta de DAT en el putamen y caudado se correlacionan con síntomas motores y cognitivos, respectivamente. Sin embargo, a pesar de su uso extendido, su uso clínico dado los métodos de evaluación actuales se limita a determinar la presencia o no de degeneración nigroestriada. En esta tesis se plantea como hipótesis que el uso de métodos de procesamiento y evaluación más sofisticados, utilizando técnicas de procesamiento de imágenes y de reconocimiento de patrones a nivel de vóxel, podría potenciar el desarrollo de nuevas aplicaciones clínicas; incluyendo la evaluación de síntomas y el diagnóstico diferencial entre parkinsonismos. Para ello, hemos caracterizado clínicamente y recogido imágenes de SPECT de cientos de pacientes con EP y otros parkinsonismos, persiguiendo dos objetivos globales: i) investigar ciertos conceptos actuales sobre los síntomas motores y cognitivos en la EP; y ii) desarrollar nuevos métodos de procesamiento y evaluación que permitan extender el rango actual de aplicaciones clínicas de dicha prueba. Se presentan un total de 5 publicaciones agrupadas en dos temáticas, una para cada objetivo global. En la primera temática, se engloban dos trabajos con títulos: 1) Lower levels of uric acid and striatal dopamine in non-tremor dominant Parkinson's disease subtype, Plos One 2017 Mar 30;12(3):e0174644; y 2) Genetic factors influencing frontostriatal dysfunction and the development of dementia in Parkinson's disease, Plos One 2017 Apr 11;12(4):e0175560. En el trabajo 1 se investigaron las diferencias entre los niveles de ácido úrico y dopamina estriatal en los subtipos motores de EP: tremorígeno, intermedio, y con trastorno de la marcha e inestabilidad postural. Estudiamos 75 pacientes con EP de larga evolución y encontramos que aquellos que presentaron un predominio de temblor al inicio y mantuvieron este fenotípo clinico durante el curso de la enfermedad, tuvieron niveles de ácido úrico y dopamina estriatal mayores que aquellos que desarrollaron trastorno de la marcha e inestabilidad postural. Además, los niveles de ácido úrico y de dopamina estriatal se correlacionaron. Como conclusión, especulamos que niveles bajos de este antioxidante natural (el ácido úrico) puede reducer los niveles de neuroprotección y por tanto influenciar el perfil y curso de fenotipo motor en la EP. En el trabajo 2 se investigó la contribución de los principales factores genéticos descritos en la literatura en los síndromes duales de deterioro cognitivo en la EP (fronto-estriatal que conlleva un alto riesgo de síndrome disejecutivo – causado por falta de dopamina – y posterior-cortical que conlleva un alto riesgo de demencia). Evaluamos la imagen, el estado cognitivo y el genotipo de 298 pacientes con EP. Como resultado, observamos que el alelo APOE2, los polimorfismos SNCA rs356219 y COMT Val158Met, y las variantes patogénicas en GBA se asociaron con los niveles de denervación dopaminérgica estriatal, mientras que el alelo APOE4 y de nuevo las variaciones patogénicas en GBA se asociaron con el desarrollo de demencia (sugiriendo un doble rol del gen GBA). No encontramos ninguna relación del haplotipo MAPT H1 en ninguno de los síndromes. Concluimos que la dicotomía de los síndromes duales puede estar conducida por una dicotomía en estos factores genéticos. En la segunda temática, se presentan otros 3 trabajos más centrados en el desarrollo de metodología, titulados: 3) Machine learning models for the differential diagnosis of vascular parkinsonism and Parkinson's disease using [123I]FP-CIT SPECT, European Journal of Nuclear Medicine and Molecular Imaging, 2015 Jan;42(1):112-9; 4) A Bayesian spatial model for neuroimaging using multiscale functional parcellations, En revisión en la revista euroimage; y un último trabajo que está en elaboración y cuyos resultados preliminares fueron presentados recientemente: 5) Probabilistic intensity normalization of PET/SPECT images via Variational mixture of Gamma distributions, 30th Neural Information and Processing Systems Conference, November 2016, Barcelona, Spain. En el trabajo 3 se desarrollaron algoritmos usando imágenes de SPECT para distinguir un parkinsonismo secundario – el parkinsonismo vascular (PV) – de la EP. Observamos que una simple regresión logística – incluyendo los valores medios de captación estriatales, junto con el sexo, la edad, y los años de evolución – diferenció ambas entidades con un 90% de exactitud. De manera similar, encontramos que el uso de algoritmos objetivos y automáticos usando técnicas de machine learning basadas en vóxeles también discriminaron ambas entidades con un 90% de exactitud. Concluimos que el diagnóstico diferencial de ambas enfermedades puede ser asistido por algoritmos automáticos basados en imagen. En el trabajo 4 se desarrolló una nueva metodología, más allá del método estándar basado en vóxeles, para realizar inferencias en neuroimagen funcional. Se desarrolló un modelo multivariado espacial que permitió modelar imágenes de SPECT de sujetos sanos de manera muy eficiente con un número de parámetros muy inferior al número de vóxeles. Dicho modelo consiste en una superposición lineal de funciones base utilizando subparcelaciones multi-escala del estriado, éstas obtenidas tras procesar imágenes de resonancia magnética funcional. También demostramos la utilidad de nuestro modelo para desarrollar aplicaciones clínicas mediante la construcción de clasificadores para diferenciar la EP de controles sanos y un parkinsonismo atípico: la parálisis supranuclear progresiva. Esta nueva metodología ofrece ventajas sin precedentes para el análisis de neuroimagen con respecto al clásico modelo lineal general univariado basado en vóxel, incluyendo: i) mayor interpretabilidad de las señales cerebrales; ii) modelos parsimoniosos y por tanto incremento del poder estadístico; y iii) modelado de la correlación espacial entre regiones y a distintos niveles de granuralidad en neuroimagen funcional. Además, desarrollamos metodología bayesiana para detectar de manera automática (y cuantificar la incertidumbre) las regiones cerebrales que estén relacionadas con ciertas variables fenotípicas. En el trabajo 5 se desarrolló un método para armonizar la intensidad de las imágenes de SPECT producidas por distintos fabricantes (y calibración) de cámaras Gamma. El método se basa en modelar el histograma de la imagen con un modelo mixto de distribuciones Gamma. Se utilizó la función de densidad acumulada de la distribución Gamma que modela la región específica de captación para reparametrizar la imagen con valores de vóxel entre 0 y 1. Observamos que dicha normalización mejoró sustancialmente (hasta un 10%) el diagnóstico de EP cuando los algoritmos se desarrollaron usando imágenes de distintas cámaras y/o calibraciones. Dicha normalización puede suponer un paso clave en pre-procesado de estas imágenes de cara a la realización de estudios multicéntricos y el desarrollo de aplicaciones clínicas generalizables. Como conclusión es importante resaltar la relevancia de los trabajos. En los trabajos 1 y 2 hemos aportado resultados con biomarcadores de valor pronóstico en la progresión de la EP. En los trabajos 3, 4 y 5, hemos aportado una nueva metodología, muy superior a la existente, de procesamiento y evaluación de esta prueba de imagen. La metodología desarrollada en el trabajo 4 permite explorar regiones cerebrales a un de nivel de complejidad espacial y granularidad sin precedentes. Por ello, nuestro modelo podría captar las diferencias entre las imágenes de pacientes con distintas patologías y/o entre síntomas específicos residir en patrones espaciales sutiles y complejos. De hecho, en los trabajos 3 y 4 aportamos resultados excelentes en la diferenciación de la EP con otros síndromes parkinsonianos. Además, el trabajo 5 tiene el potencial de constituirse en el campo como un paso fundamental de pre-procesado, especialmente en estudios ulticéntricos y estudios que pretendan desarrollar aplicaciones clínicas generalizables, independientemente de la cámara Gamma y el centro donde se realice la prueba. Es importante señalar además que los métodos desarrollados se podrían igualmente aplicar para procesar y evaluar otro tipo de imágenes de medicina nuclear y/u otras regiones cerebrales. Es por ello que esperamos que este trabajo tenga un gran impacto en general en la evaluación de este tipo de imágenes y en el desarrollo de algoritmos que den soporte a la decisiones clínicas en trastornos del movimiento y potencialmente en otras enfermedades.The imaging of the dopamine transporter (DAT) with [123I]FP-CIT SPECT is a routinely used assessment in the diagnostic pipeline of Parkinson’s disease (PD) and other movement disorders that present with parkinsonian symptoms. In this scan, the levels of striatal DAT can be visualized and quantified, also at the region-of-interest (ROI) level in putamen and caudate, and therefore it constitutes an useful tool to assess in-vivo the state of the dopaminergic presynaptic terminals in the nigrostriatal pathway. In routine clinical practice it is especially utilized for the differential diagnlosis of presynaptic neurodegenerative disorders like PD and other non-presynaptic movement disorders like essential tremor. Also, numerous research studies have shown that striatal DAT deficits quantitatively correlate with motor and cognitive impairment in PD. Indeed, it can be seen in the image a posterior-to-anterior pattern of degeneration that well corresponds with disease progression due to the progressive lost of dopaminergic input into the motor and associative loops between the basal ganglia and the cortex. However, despite its known utility and widespread availability, its use with current assessment methods in real clinical practice is limited to determining the presence of nigrostriatal degeneration at a single-subject level in a binary fashion. We hypothesized in this thesis that an enhanced processing and assessment of this scan with modern image processing and pattern recognition techniques may help to boost its use in the clinic with new and more accurate applications, including symptom risk assessment and differential diagnosis with other parkinsonisms. We collected DAT scans of several hundreds of well-clinicallyphenotyped patients with PD and other parkinsonims, envisaging two main global objectives: i) to investigate some trending hypotheses and concepts about the motor and cognitive impairment in PD; and ii) to develop new processing and evaluation strategies with computational techniques to shed light into new clinical applications. A total of 5 publications are herein presented and grouped in two themes, one for each global objective. In the first theme, two works are presented, entitled: 1) Lower levels of uric acid and striatal dopamine in non-tremor dominant Parkinson's disease subtype, Plos One 2017 Mar 30;12(3):e0174644; and 2) Genetic factors influencing frontostriatal dysfunction and the development of dementia in Parkinson's disease, Plos One 2017 Apr 11;12(4):e0175560. In work 1 we investigated the differences in uric acid and striatal DAT in PD motor subtypes: tremor-dominant, intermediate, or postural instability and gait disorder (PIGD). We studied 75 PD patients of long-term evolution and found that those who presented with a tremor onset and maintained predominance of tremor, or, to a lesser extent, evolved to an intermediate phenotype, had higher levels of uric acid and striatal DAT binding than those who developed a IGD phenotype. We also found that uric acid and striatal DAT levels were highly correlated. We speculate that low levels of this natural antioxidant may lead to a lesser degree of neuroprotection and could therefore influence the motor phenotype and course. In work 2 we investigated the contribution to the dual syndromes of cognitive impairment in PD (frontostriatal dopamine-mediated and posterior cortical leading to dementia) of the main genetic risk factors decribed in the literature. We evaluated the scans, the cognitive status, and the genotypes of 298 PD patients and found that APOE2 allele, SNCA rs356219 and COMT Val158Met polymorphisms, and deleterious variants in GBA influenced striatal dopaminergic depletion, and that APOE4 allele and deleterious variants in GBA influenced dementia, thus suggesting a doubleedged role for GBA. We did not found any role of MAPT H1 haplotype. We conclude that the dichotomy of the dual syndromes may be driven by a broad dichotomy in these genetic factors. In the second theme, we present three other works with more focus on methodology, entitled: 3) Machine learning models for the differential diagnosis of vascular parkinsonism and Parkinson's disease using [123I]FP-CIT SPECT, European Journal of Nuclear Medicine and Molecular Imaging, 2015 Jan;42(1):112-9; 4) A Bayesian spatial model for neuroimaging using multiscale functional parcellations, Under Review in Neuroimage; and a last piece of work that it is in preparation for submission and that I have adapted for this thesis from 5) Probabilistic intensity normalization of PET/SPECT images via Variational mixture of Gamma distributions, 30th Neural Information and Processing Systems Conference, November 2016, Barcelona, Spain. In work 3 we developed analytical models using DAT SPECT data to discriminate vascular parkinsonism (VP) from PD. We collected scans from 80 VP and 164 PD and found that a simple logistic regression using the quantification of the striatal subregions putamen and caudate together with age, sex and disease duration discriminated both entities with over 90% accuracy. Also, we found that the use of more automated and rater-independent machine learning algorithms such as support vector machines with the voxel-wise data of the striatum also gives discrimination accuracy over 90%. We conclude that the differential diagnosis of both diseases can be aided by automated image-based algorithms. In work 4 we developed a new anaylsis framework to perform inferences with functional neuroimaging data. We developed a multivariate spatial model by which an imaged brain region can be efficiently represented in low dimensions with a linear superposition of basis functions. To demonstrate, we accurately modeled DATSCAN images from healthy subjects with a linear combination of multi-resolutional striatum parcellations derived from functional MRI experiments. We also demonstrate the utility of our model to develop clinical application by constructing accurate classifiers to differentiate PD from normal controls and patients with an atypical parkinsonism: the progressive supranuclear palsy. This approach offers unprecedent benefits with respect to classical univariate voxel methods, including: i) greater biological interpretability of the detected brain signals ii) parsimonity in the models and hence gain in statistical power; and iii) multi-range modeling of the spatial dependencies in brain images. Furthermore, we provide a bayesian analysis framework to automatically identifying brain subregions/subnetworks that are meaningful for particular phenotypic variables. In work 5 we developed a voxel-based intensity normalization method for DAT SPECT images aiming at overcoming the liminations of the current ROI-based normalization standard, namely ROI delineation dependence and intensity values dependence on Gamma camera. We found that the intensity histogram of a DAT SPECT image can be modeled as a mixture model of Gamma distributions. The cumulative distribution function (CDF) of the fitted Gamma distributions can be used to re-cast the voxel intensity values into a new normalized feature space between 0 and 1. We found that this re-parametrization equalized intensity across cameras and drastically improved the accuracy of PD diagnosis (up to 10%) when images from different cameras were pooled. Importantly, our method may constitute a key pre-processing step for group-level and multi-center studies. As a final remark, it is important to stress the relevance of the work. In the works 1 and 2, we have provided new insights on biomarkers that have prognostic value in the progression of PD. In the works 3, 4 and 5, which set the grounds of a new powerful approach to process and evaluate these images. The machine learning framework developed in work 4) allows to exploring brain regions at a unprecedent level of spatial complexity and granurality. Thus, challenging tasks such as the differential diagnosis between different parkinsonian disorders or the identification of fine-grained regions/networks responsible for specific parkinsonian symptoms can be tackled with the proposed approach. In fact, we obtained excellent results in works 3 and 4 in the differentiation of PD from other parkinsonian syndromes. Also, the work 5 may constitute a fundamental pre-processing step, especially in multi-center studies and studies aiming at developing generalizable clinical applications, regardless of the Gamma camera manufacturer and site where the scan is made. It is important to note that, besides DATSCAN, these methods could be also applied to other nuclearmedicine images and/or brain regions. We hope that this work will have an impact in the assessment of this type of images and in the development of algorithms supporting clinical decisions in movement disorders and potentially in other diseases as well.Premio Extraordinario de Doctorado U

    Computer-Aided Diagnosis in Neuroimaging

    Get PDF
    This chapter is intended to provide an overview to the most used methods for computer-aided diagnosis in neuroimaging and its application to neurodegenerative diseases. The fundamental preprocessing steps, and how they are applied to different image modalities, will be thoroughly presented. We introduce a number of widely used neuroimaging analysis algorithms, together with a wide overview on the recent advances in brain imaging processing. Finally, we provide a general conclusion on the state of the art in brain imaging processing and possible future developments

    Statistical Neuroimage Modeling, Processing and Synthesis based on Texture and Component Analysis: Tackling the Small Sample Size Problem

    Get PDF
    The rise of neuroimaging in the last years has provided physicians and radiologist with the ability to study the brain with unprecedented ease. This led to a new biological perspective in the study of neurodegenerative diseases, allowing the characterization of different anatomical and functional patterns associated with them. CAD systems use statistical techniques for preparing, processing and extracting information from neuroimaging data pursuing a major goal: optimize the process of analysis and diagnosis of neurodegenerative diseases and mental conditions. With this thesis we focus on three different stages of the CAD pipeline: preprocessing, feature extraction and validation. For preprocessing, we have developed a method that target a relatively recent concern: the confounding effect of false positives due to differences in the acquisition at multiple sites. Our method can effectively merge datasets while reducing the acquisition site effects. Regarding feature extraction, we have studied decomposition algorithms (independent component analysis, factor analysis), texture features and a complete framework called Spherical Brain Mapping, that reduces the 3-dimensional brain images to two-dimensional statistical maps. This allowed us to improve the performance of automatic systems for detecting Alzheimer's and Parkinson's diseases. Finally, we developed a brain simulation technique that can be used to validate new functional datasets as well as for educational purposes

    Improving nuclear medicine with deep learning and explainability: two real-world use cases in parkinsonian syndrome and safety dosimetry

    Get PDF
    Computer vision in the area of medical imaging has rapidly improved during recent years as a consequence of developments in deep learning and explainability algorithms. In addition, imaging in nuclear medicine is becoming increasingly sophisticated, with the emergence of targeted radiotherapies that enable treatment and imaging on a molecular level (“theranostics”) where radiolabeled targeted molecules are directly injected into the bloodstream. Based on our recent work, we present two use-cases in nuclear medicine as follows: first, the impact of automated organ segmentation required for personalized dosimetry in patients with neuroendocrine tumors and second, purely data-driven identification and verification of brain regions for diagnosis of Parkinson’s disease. Convolutional neural network was used for automated organ segmentation on computed tomography images. The segmented organs were used for calculation of the energy deposited into the organ-at-risk for patients treated with a radiopharmaceutical. Our method resulted in faster and cheaper dosimetry and only differed by 7% from dosimetry performed by two medical physicists. The identification of brain regions, however was analyzed on dopamine-transporter single positron emission tomography images using convolutional neural network and explainability, i.e., layer-wise relevance propagation algorithm. Our findings confirm that the extra-striatal brain regions, i.e., insula, amygdala, ventromedial prefrontal cortex, thalamus, anterior temporal cortex, superior frontal lobe, and pons contribute to the interpretation of images beyond the striatal regions. In current common diagnostic practice, however, only the striatum is the reference region, while extra-striatal regions are neglected. We further demonstrate that deep learning-based diagnosis combined with explainability algorithm can be recommended to support interpretation of this image modality in clinical routine for parkinsonian syndromes, with a total computation time of three seconds which is compatible with busy clinical workflow. Overall, this thesis shows for the first time that deep learning with explainability can achieve results competitive with human performance and generate novel hypotheses, thus paving the way towards improved diagnosis and treatment in nuclear medicine

    SPECT imaging and Automatic Classification Methods in Movement Disorders

    Get PDF
    This work investigates neuroimaging as applied to movement disorders by the use of radionuclide imaging techniques. There are two focuses in this work: 1) The optimisation of the SPECT imaging process including acquisition and image reconstruction. 2) The development and optimisation of automated analysis techniques The first part has included practical measurements of camera performance using a range of phantoms. Filtered back projection and iterative methods of image reconstruction were compared and optimised. Compensation methods for attenuation and scatter are assessed. Iterative methods are shown to improve image quality over filtered back projection for a range of image quality indexes. Quantitative improvements are shown when attenuation and scatter compensation techniques are applied, but at the expense of increased noise. The clinical acquisition and processing procedures were adjusted accordingly. A large database of clinical studies was used to compare commercially available DaTSCAN quantification software programs. A novel automatic analysis technique was then developed by combining Principal Component Analysis (PCA) and machine learning techniques (including Support Vector Machines, and Naive Bayes). The accuracy of the various classification methods under different conditions is investigated and discussed. The thesis concludes that the described method can allow automatic classification of clinical images with equal or greater accuracy to that of commercially available systems

    A ROLE FOR LOCUS COERULEUS IN PARKINSON TREMOR - EXPERIMENTAL STUDIES

    Get PDF
    Although Parkinson disease (PD) is characterized by the degeneration of nigrostriatal dopamine (DA) neurons, historic and more recent anatomopathological studies documented also an involvement of the serotonergic and cholinergic systems as well as a profound loss of neurons from the locus coeruleus (LC), the major noradrenergic (NAergic) nucleus in the brain. In the following studies, I will provide preliminary evidence of a new provocative hypothesis on the significance of LC in conditioning Parkinson tremor. In particular, I speculate that, early at a disease stage, patients with PD and tremor might have an (hyper-)active LC-NAergic system, which would play a key role in the appearance of tremor itself. Furthermore, given a putative compensatory and possibly neuroprotective mechanism of noradrenaline (NA), an intact or hyper-active NAergic system would be responsible for, and support the clinical observation of, a slower disease progression in PD patients with tremor. When verified, this hypothesis will define, for the first time at a physio-pathological level, two different clinical phenotypes (i.e. tremor dominant and akinetic-rigid PD) and possibly suggest new interventional strategies (targeting the NAergic system) to modify disease progression. A number of drugs that can modulate the NAergic system already exist, ripe for testing. There is no cure for PD, and understanding the cause and progression of the neurodegenerative process is as challenging as it is necessary

    Can we improve the early diagnosis of Lewy body disease with more accurate quantification of nuclear medicine scans.

    Get PDF
    Ph.D ThesisThis thesis investigates the quantification of two scintigraphic biomarkers used for the diagnosis of dementia with Lewy bodies (DLB): 123I-FP-CIT (123I-N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl) nortropane), commonly known as DaTSCAN™,and cardiac 123I-MIBG(123I-metaiodobenzylguanidine). Accurate quantification is critical as we increasingly move towards diagnosis at the earlier mild cognitive impairment (MCI) stage, where more subtle changes from normality are expected. A range of novel approaches have been examined to overcome technical limitations that have previously been barriers to accurate quantification. Uniquely, this has been studied in cohorts of highly characterised dementia and MCI subjects as well as older adults with normal cognition recruited as age matched controls. The subject studies have been complemented by work using advanced anthropomorphic phantoms. Throughout, the innovative methods have been compared with the established ones. Results are presented in detail and clinical and research relevance is discussed together with proposals for optimal usage. Briefly, the key findings are:FP-CIT key findings•Specific binding ratio values (SBR) for FP-CIT images calculated by different software packages are systematically different, although give similar diagnostic accuracy. •Striatal uptake does not decrease with age in healthy older adults, as previously reported, indicating potential misdiagnosis if age correction is applied. •Absolute quantification separates normal and abnormal subjects less well than relative-quantification with SBR.•Advanced FP-CIT reconstruction methods using SPECT-CT and collimator modelling improve the accuracy of activity concentration measurements in a phantom.•Advanced FP-CIT reconstruction methods affect relative quantification with SBR, but not clinical interpretation. Cardiac MIBG key findings•Different methods of planar MIBG analysis are operator dependent and give systematically different results – recommendations are provided for an optimal method.•Establishing a normal threshold is critical. This thesis shows that previously published values may not be valid in a UK population and proposes a suitable alternative. •Images obtained soon after injection give similar accuracy as those obtained at 3.5 hours (the standard delayed method), and the latter scans could be omitted in the majority of cases. •Planar cardiac MIBG semi-quantification is significantly dependent on subject size. Using SPECT-CT gives greater separation between normal and abnormal scans than planar. II In summary, an in-depth and comprehensive study of technical aspects of Nuclear Medicine biomarker quantification using 123I labelled radiopharmaceuticals for the diagnosis of Lewy body disease is presented in this thesis. This provides a solid foundation for clinical and research application of these techniques in both early and established diseaseAlzheimer’s Societ

    A survey on classification algorithms of brain images in Alzheimer’s disease based on feature extraction techniques

    Get PDF
    Abstract: Alzheimer’s disease (AD) is one of the most serious neurological disorders for elderly people. AD affected patient experiences severe memory loss. One of the main reasons for memory loss in AD patients is atrophy in the hippocampus, amygdala, etc. Due to the enormous growth of AD patients and the paucity of proper diagnostic tools, detection and classification of AD are considered as a challenging research area. Before a Cognitively normal (CN) person develops symptoms of AD, he may pass through an intermediate stage, commonly known as Mild Cognitive Impairment (MCI). MCI is having two stages, namely StableMCI (SMCI) and Progressive MCI (PMCI). In SMCI, a patient remains stable, whereas, in the case of PMCI, a person gradually develops few symptoms of AD. Several research works are in progress on the detection and classification of AD based on changes in the brain. In this paper, we have analyzed few existing state-of-art works for AD detection and classification, based on different feature extraction approaches. We have summarized the existing research articles with detailed observations. We have also compared the performance and research issues in each of the feature extraction mechanisms and observed that the AD classification using the wavelet transform-based feature extraction approaches might achieve convincing results
    corecore