134 research outputs found

    A Hierachical Evolutionary Algorithm for Multiobjective Optimization in IMRT

    Full text link
    Purpose: Current inverse planning methods for IMRT are limited because they are not designed to explore the trade-offs between the competing objectives between the tumor and normal tissues. Our goal was to develop an efficient multiobjective optimization algorithm that was flexible enough to handle any form of objective function and that resulted in a set of Pareto optimal plans. Methods: We developed a hierarchical evolutionary multiobjective algorithm designed to quickly generate a diverse Pareto optimal set of IMRT plans that meet all clinical constraints and reflect the trade-offs in the plans. The top level of the hierarchical algorithm is a multiobjective evolutionary algorithm (MOEA). The genes of the individuals generated in the MOEA are the parameters that define the penalty function minimized during an accelerated deterministic IMRT optimization that represents the bottom level of the hierarchy. The MOEA incorporates clinical criteria to restrict the search space through protocol objectives and then uses Pareto optimality among the fitness objectives to select individuals. Results: Acceleration techniques implemented on both levels of the hierarchical algorithm resulted in short, practical runtimes for optimizations. The MOEA improvements were evaluated for example prostate cases with one target and two OARs. The modified MOEA dominated 11.3% of plans using a standard genetic algorithm package. By implementing domination advantage and protocol objectives, small diverse populations of clinically acceptable plans that were only dominated 0.2% by the Pareto front could be generated in a fraction of an hour. Conclusions: Our MOEA produces a diverse Pareto optimal set of plans that meet all dosimetric protocol criteria in a feasible amount of time. It optimizes not only beamlet intensities but also objective function parameters on a patient-specific basis

    When is Better Best? A multiobjective perspective

    Full text link
    Purpose: To identify the most informative methods for reporting results of treatment planning comparisons. Methods: Seven papers from the past year of International Journal of Radiation Oncology Biology Physics reported on comparisons of treatment plans for IMRT and IMAT. The papers were reviewed to identify methods of comparisons. Decision theoretical concepts were used to evaluate the study methods and highlight those that provide the most information. Results: None of the studies examined the correlation between objectives. Statistical comparisons provided some information but not enough to make provide support for a robust decision analysis. Conclusion: The increased use of treatment planning studies to evaluate different methods in radiation therapy requires improved standards for designing the studies and reporting the results

    An intelligent oncology workstation for the 21st century

    Get PDF

    A GPU-based multi-criteria optimization algorithm for HDR brachytherapy

    Full text link
    Currently in HDR brachytherapy planning, a manual fine-tuning of an objective function is necessary to obtain case-specific valid plans. This study intends to facilitate this process by proposing a patient-specific inverse planning algorithm for HDR prostate brachytherapy: GPU-based multi-criteria optimization (gMCO). Two GPU-based optimization engines including simulated annealing (gSA) and a quasi-Newton optimizer (gL-BFGS) were implemented to compute multiple plans in parallel. After evaluating the equivalence and the computation performance of these two optimization engines, one preferred optimization engine was selected for the gMCO algorithm. Five hundred sixty-two previously treated prostate HDR cases were divided into validation set (100) and test set (462). In the validation set, the number of Pareto optimal plans to achieve the best plan quality was determined for the gMCO algorithm. In the test set, gMCO plans were compared with the physician-approved clinical plans. Over 462 cases, the number of clinically valid plans was 428 (92.6%) for clinical plans and 461 (99.8%) for gMCO plans. The number of valid plans with target V100 coverage greater than 95% was 288 (62.3%) for clinical plans and 414 (89.6%) for gMCO plans. The mean planning time was 9.4 s for the gMCO algorithm to generate 1000 Pareto optimal plans. In conclusion, gL-BFGS is able to compute thousands of SA equivalent treatment plans within a short time frame. Powered by gL-BFGS, an ultra-fast and robust multi-criteria optimization algorithm was implemented for HDR prostate brachytherapy. A large-scale comparison against physician approved clinical plans showed that treatment plan quality could be improved and planning time could be significantly reduced with the proposed gMCO algorithm.Comment: 18 pages, 7 figure

    IMRT beam angle optimization using electromagnetism-like algorithm

    Get PDF
    The selection of appropriate beam irradiation directions in radiotherapy ā€“ beam angle optimization (BAO) problem ā€“ is very impor- tant for the quality of the treatment, both for improving tumor irradia- tion and for better organs sparing. However, the BAO problem is still not solved satisfactorily and, most of the time, beam directions continue to be manually selected in clinical practice which requires many trial and error iterations between selecting beam angles and computing ļ¬‚uence patterns until a suitable treatment is achieved. The objective of this pa- per is to introduce a new approach for the resolution of the BAO problem, using an hybrid electromagnetism-like algorithm with descent search to tackle this highly non-convex optimization problem. Electromagnetism- like algorithms are derivative-free optimization methods with the ability to avoid local entrapment. Moreover, the hybrid electromagnetism-like algorithm with descent search has a high ability of producing descent directions. A set of retrospective treated cases of head-and-neck tumors at the Portuguese Institute of Oncology of Coimbra is used to discuss the beneļ¬ts of the proposed algorithm for the optimization of the BAO problem.FundaĆ§Ć£o para a CiĆŖncia e a Tecnologia (FCT

    Feasibility of Multisolutions Optimization Technique for Real-Time HDR Brachytherapy of Prostate

    Get PDF
    The purpose of this study was to evaluate the efficacy of multisolutions optimization algorithm for High Dose Rate (HDR) brachytherapy of prostate. In this retrospective study, we included data from 20 prostate cancer patients who underwent ultrasound based real time HDR Brachytherapy at institution. The treatment plans of all 20 patients were optimized in Oncentra Prostate treatment planning system (TPS) using inverse dose volume histogram based optimization followed by graphical optimization (GRO) in real time. The data of all the patients were retrieved later, and the treatment plans were re-optimized using multisolutions dose volume histogram based optimization (MDVHO) and multisolutions variance based optimization (MVBO) algorithms with same set of dose constraints, same number of catheters, and same contour set as in GRO. Several Pareto optimal solutions were obtained by varying the weighting factors of composite objective function in finite steps of adequate resolutions.Ā  These solutions were then stored in the database of TPS and same decision criteria was employed to pick the final solution using a decision engine. The average values for planning target volume receiving 100% of prescribed dose (V100) for MDVHO, MVBO, and GRO were 95.03%, 86.72% and 97.56%, respectively. The average V100 due to MDVHO was statistically significant (P = 0.002) in comparison to MVBO, whereas the average V100 due to MDVHO and GRO was not statistically significant (P = 0.066). In conclusion, the MDVHO can provide comparable solutions to typical clinical optimizations using GRO within clinically reasonable amount of time. In most of the cases, the plans created by MVBO were not clinically acceptable without usersā€™ further manual intervention
    • ā€¦
    corecore