16 research outputs found

    Human Metaphase Chromosome Analysis using Image Processing

    Get PDF
    Development of an effective human metaphase chromosome analysis algorithm can optimize expert time usage by increasing the efficiency of many clinical diagnosis processes. Although many methods exist in the literature, they are only applicable for limited morphological variations and are specific to the staining method used during cell preparation. They are also highly influenced by irregular chromosome boundaries as well as the presence of artifacts such as premature sister chromatid separation. Therefore an algorithm is proposed in this research which can operate with any morphological variation of the chromosome across images from multiple staining methods. The proposed algorithm is capable of calculating the segmentation outline, the centerline (which gives the chromosome length), partitioning of the telomere regions and the centromere location of a given chromosome. The algorithm also detects and corrects for the sister chromatid separation artifact in metaphase cell images. A metric termed the Candidate Based Centromere Confidence (CBCC) is proposed to accompany each centromere detection result of the proposed method, giving an indication of the confidence the algorithm has on a given localization. The proposed method was first tested for the ability of calculating an accurate width profile against a centerline based method [1] using 226 chromosomes. A statistical analysis of the centromere detection error values proved that the proposed method can accurately locate centromere locations with statistical significance. Furthermore, the proposed method performed more consistently across different staining methods in comparison to the centerline based approach. When tested with a larger data set of 1400 chromosomes collected from a set of DAPI (4\u27,6-diamidino-2-phenylindole) and Giemsa stained cell images, the proposed candidate based centromere detection algorithm was able to accurately localize 1220 centromere locations yielding a detection accuracy of 87%

    Integrated Development and Parallelization of Automated Dicentric Chromosome Identification Software to Expedite Biodosimetry Analysis

    Get PDF
    Manual cytogenetic biodosimetry lacks the ability to handle mass casualty events. We present an automated dicentric chromosome identification (ADCI) software utilizing parallel computing technology. A parallelization strategy combining data and task parallelism, as well as optimization of I/O operations, has been designed, implemented, and incorporated in ADCI. Experiments on an eight-core desktop show that our algorithm can expedite the process of ADCI by at least four folds. Experiments on Symmetric Computing, SHARCNET, Blue Gene/Q multi-processor computers demonstrate the capability of parallelized ADCI to process thousands of samples for cytogenetic biodosimetry in a few hours. This increase in speed underscores the effectiveness of parallelization in accelerating ADCI. Our software will be an important tool to handle the magnitude of mass casualty ionizing radiation events by expediting accurate detection of dicentric chromosomes

    Accurate cytogenetic biodosimetry through automated dicentric chromosome curation and metaphase cell selection

    Get PDF
    Accurate digital image analysis of abnormal microscopic structures relies on high quality images and on minimizing the rates of false positive (FP) and negative objects in images. Cytogenetic biodosimetry detects dicentric chromosomes (DCs) that arise from exposure to ionizing radiation, and determines radiation dose received based on DC frequency. Improvements in automated DC recognition increase the accuracy of dose estimates by reclassifying FP DCs as monocentric chromosomes or chromosome fragments. We also present image segmentation methods to rank high quality digital metaphase images and eliminate suboptimal metaphase cells. A set of chromosome morphology segmentation methods selectively filtered out FP DCs arising primarily from sister chromatid separation, chromosome fragmentation, and cellular debris. This reduced FPs by an average of 55% and was highly specific to these abnormal structures (≥97.7%) in three samples. Additional filters selectively removed images with incomplete, highly overlapped, or missing metaphase cells, or with poor overall chromosome morphologies that increased FP rates. Image selection is optimized and FP DCs are minimized by combining multiple feature based segmentation filters and a novel image sorting procedure based on the known distribution of chromosome lengths. Applying the same image segmentation filtering procedures to both calibration and test samples reduced the average dose estimation error from 0.4 Gy to \u3c0.2 Gy, obviating the need to first manually review these images. This reliable and scalable solution enables batch processing for multiple samples of unknown dose, and meets current requirements for triage radiation biodosimetry of high quality metaphase cell preparations

    Expedited Radiation Biodosimetry by Automated Dicentric Chromosome Identification (ADCI) and Dose Estimation

    Get PDF
    Biological radiation dose can be estimated from dicentric chromosome frequencies in metaphase cells. Performing these cytogenetic dicentric chromosome assays is traditionally a manual, labor-intensive process not well suited to handle the volume of samples which may require examination in the wake of a mass casualty event. Automated Dicentric Chromosome Identifier and Dose Estimator (ADCI) software automates this process by examining sets of metaphase images using machine learning-based image processing techniques. The software selects appropriate images for analysis by removing unsuitable images, classifies each object as either a centromere-containing chromosome or non-chromosome, further distinguishes chromosomes as monocentric chromosomes (MCs) or dicentric chromosomes (DCs), determines DC frequency within a sample, and estimates biological radiation dose by comparing sample DC frequency with calibration curves computed using calibration samples. This protocol describes the usage of ADCI software. Typically, both calibration (known dose) and test (unknown dose) sets of metaphase images are imported to perform accurate dose estimation. Optimal images for analysis can be found automatically using preset image filters or can also be filtered through manual inspection. The software processes images within each sample and DC frequencies are computed at different levels of stringency for calling DCs, using a machine learning approach. Linear-quadratic calibration curves are generated based on DC frequencies in calibration samples exposed to known physical doses. Doses of test samples exposed to uncertain radiation levels are estimated from their DC frequencies using these calibration curves. Reports can be generated upon request and provide summary of results of one or more samples, of one or more calibration curves, or of dose estimation

    COMPREHENSIVE PERFORMANCE EVALUATION AND OPTIMIZATION OF HIGH THROUGHPUT SCANNING MICROSCOPY FOR METAPHASE CHROMOSOME IMAGING

    Get PDF
    Specimen scanning is a critically important tool for diagnosing the genetic diseases in today’s hospital. In order to reduce the clinician’s work load, many investigations have been conducted on developing automatic sample screening techniques in the last twenty years. However, the currently commercialized scanners can only accomplish the low magnification sample screening (i.e. under 10× objective lens), and still require clinicians’ manual operation for the high magnification image acquisition and confirmation (i.e. under 100× objective lens). Therefore, a new high throughput scanning method is recently proposed to continuously scan the specimen and select the clinically analyzable cells. In the medical imaging lab, University of Oklahoma, a prototype of high throughput scanning microscopy is built based on the time delay integration (TDI) line scanning detector. This new scanning method, however, raises several technical challenges for evaluating and optimizing the performance. First, we need to use the clinical samples to compare this new prototype with the conventional two-step scanners. Second, the system DOF should be investigated to assess the impact on clinically analyzable metaphase chromosomes. Further, in order to achieve the optimal results, we should carefully assess and select the auto-focusing methods for the high throughput scanning system. Third, we need to optimize the scanning scheme by finding the optimal trade-off between the image quality and efficiency. Finally, analyzing the performance of the various image features is meaningful for improving the performance of the computer aided detection (CAD) scheme under the high throughput scanning condition. The purpose of this dissertation is to comprehensively evaluate the performance of the high throughput scanning prototype. The first technical challenge was solved by the first investigation, which utilized a number of 9 slides from five patients to compare the detecting performance of the high throughput scanning prototype. The second and third studies were performed for the second technical challenge. In the second study, we first theoretically computed the DOF of our prototype and then experimentally measured the system DOF. After that, the DOF impact was analyzed using cytogenetic images from different pathological specimens, under the condition of two objective lenses of 60× (dry, N.A. = 0.95) and 100× (oil, N.A. = 1.25). In the third study, five auto-focusing functions were investigated using metaphase chromosome images. The performance of these different functions was compared using four widely accepted criteria. The fourth and fifth investigations were designed for the third technical challenge. The fourth study objectively assessed chromosome band sharpness by a gradient sharpness function. The sharpness of the images captured from standard resolution target and several pathological chromosomes was objectively evaluated by the gradient sharpness function. The fifth study presented a new slide scanning scheme, which only applies the auto-focusing operations on limited locations. The focusing position was adjusted very quickly by linear interpolation for the other locations. The sixth study was aimed for the fourth technical challenge. The study investigated 9 different feature extraction methods for the CAD modules applied on our high throughput scanning prototype. A certain amount of images were first acquired from 200 bone marrow cells. Then the tested features were performed on these images and the images containing clinically meaningful chromosomes were selected using each feature individually. The identifying accuracy of each feature was evaluated using the receiver operating characteristic (ROC) method. In this dissertation, we have the following results. First, in most cases, we demonstrated that the high throughput scanning can select more diagnostic images depicting clinically analyzable metaphase chromosomes. These selected images were acquired with adequate spatial resolution for the following clinical interpretation. Second, our results showed that, for the commonly used pathological specimens, the metaphase chromosome band patterns are clinically recognizable when these chromosomes were obtained within 1.5 or 1.0 μm away from the focal plane, under the condition of applying the two 60× or 100× objective lenses, respectively. In addition, when scanning bone marrow and blood samples, the Brenner gradient and threshold pixel counting methods can achieve the optimal performance, respectively. Third, we illustrated that the optimal scanning speed of clinical samples is 0.8 mm/s, for which the captured image sharpness is optimized. When scanning the blood sample slide with an auto-focusing distance of 6.9 mm, the prototype obtained an adequate number of analyzable metaphase cells. More useful cells can be captured by increasing the auto-focusing operations, which may be needed for the high accuracy diagnosis. Finally, we found that the optimal feature for the online CAD scheme is the number of the labeled regions. When applying the offline CAD scheme, the satisfactory results can be achieved by combining four different features including the number of the labeled regions, average region area, average region pixel value, and the standard deviation of the either region circularity or distance. Although these investigations are encouraging, there exist several limitations. First, the number of the specimens is limited in most of the assessments. Second, some important impacts, such as the DOF of human eye and the sample thickness, are not considered. Third, more recently proposed algorithms and image features are not used for the evaluation. Therefore, several further studies are planned, which may provide more meaningful information for improving the scanning efficiency and image quality. In summary, we believe that the high throughput scanning may be extensively applied for diagnosing genetic diseases in the future

    HIGH-THROUGHPUT FLUORESCENCE MICROSCOPY FOR AUTOMATED CLINICAL APPLICATIONS

    Get PDF
    Fluorescence in situ hybridization (FISH) is a powerful tool for visualizing and detecting genetic abnormalities. Manual scoring FISH analysis is a tedious and labor-and-time-consuming task. Automated image acquisition and analysis provide an opportunity to overcome the difficulties. However, conventional fluorescence microscopes, the mostly used instrument for FISH imaging, have deficiencies. A multi-spectral image modality must be employed in order to visualize fluorescently dyed FISH probes for analysis, and the existing technologies are either two expensive, too slow, or both. Aiming at upgrading the current employed cytogenetic instrumentation, we developed a new imaging technique capable of simultaneously imaging multiple color spectra. Using the principle, we implemented a prototype system and conduct various characterization experiments. Experiment results (<1% peripheral geometric distortion, consistent signal response linearity, and ~2000 lp/mm spatial resolution) show no significant compromise in terms of optical performance. A detector alignment scheme was developed and performed to minimize registration error. The system has significantly faster acquisition speed than conventional fluorescence microscopes albeit the extra cost is quite insignificant

    4D Nucleome of Cancer

    Full text link
    Chromosomal translocations and aneuploidy are hallmarks of cancer genomes; however, the impact of these aberrations on the nucleome (i.e., nuclear structure and gene expression) are not yet understood. This dissertation aims to understand the changes in nuclear structure and function that occur as a result of cancer, i.e., the 4D nucleome of cancer. Understanding of nuclear shape and organization and how it changes over time in both healthy cells as well as cancer cells is an area of exploration through the 4D nucleome project. First, I explore healthy cells including periodic changes in nuclear shape as fibroblasts cells grow and divide. Shape and volume changed significantly over the time series including a periodic frequency consistent with the cell cycle. Next, combined analysis of genome wide chromosome conformation capture and RNA-sequencing data identified regions with different expression or interactions in cells grown in 2D or 3D cell culture. Next, I elucidate how chromosomal aberrations affect the nucleome of cancer cells. A high copy number region is studied, and we show that around sites of translocation, chromatin accessibility more directly reflects transcription. The methods developed, including a new copy number based normalization method, were released in the 4D nucleome analysis toolbox (NAT), a publicly available MATLAB toolbox allowing others to use the tools for assessment of the nucleome. Finally, I describe continuing projects. By comparing cancer stem cells to non- stem cell like cancer cells, a bin on chromosome 8 was identified that includes two stem cell related transcription factors, POU5F1B and MYC. Then tools for evaluating allele specific expression are developed and used to measure how allele specific structure and function varies through the cell cycle. This work creates a foundation for robust analysis of chromosome conformation and provides insight into the effect of nuclear organization in cancer.PHDBioinformaticsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/140814/1/laseaman_1.pd

    Investigating the 3D chromatin architecture with fluorescence microscopy

    Get PDF
    Chromatin is an assembly of DNA and nuclear proteins, which on the one hand has the function to properly store the 2 meters of DNA of a diploid human nucleus in a small volume and on the other hand regulates the accessibility of specific DNA segments for proteins. Many cellular processes like gene expression and DNA repair are affected by the three-dimensional architecture of chromatin. Cohesin is an important and well-studied protein that affects three-dimensional chromatin organization. One of the functions of this motor protein is the active generation of specific domain structures (topologically associating domains (TADs)) by the process of loop extrusion. Studies of cohesin depleted cells showed that TAD structures were lost on a population average. Due to this finding, the question arose, to what extent the functional nuclear architecture, that can be detected by confocal and structured illumination microscopy, is impaired when cells were cohesin depleted. The work presented in this thesis could show that the structuring of the nucleus in areas with different chromatin densities including the localization of important nuclear proteins as well as replication patterns was retained. Interestingly, cohesin depleted cells proceeded through an endomitosis leading to the formation of multilobulated nuclei. Obviously, important structural features of chromatin can form even in the absence of cohesin. In the here presented work, fluorescence microscopic methods were used throughout, and an innovative technique was developed, that allows flexible labeling of proteins with different fluorophores in fixed cells. With this technique DNA as well as peptide nucleic acid (PNA) oligonucleotides can be site-specifically coupled to antibodies via the Tub-tag technology and visualized by complementary fluorescently labeled oligonucleotides. The advantages and disadvantages of PNAs as docking strands are discussed in this thesis as well as the use of PNAs in fluorescence in situ hybridization (FISH). In the next study, which is part of this work, a combination of FISH and super-resolution microscopy was used. There it could be shown that DNA segments of 5 kb can form both compact and elongated configurations in regulatory active as well as inactive chromatin. Coarse-grained modeling of these microscopic data, in agreement with published data from other groups, has suggested that elongated configurations occur more frequently in DNA segments in which the occupancy of nucleosomes is reduced. The microscopically measured distance distributions could only be simulated with models that assume different densities of nucleosomes in the population. Another result of this study was that inactive chromatin - as expected - shows a high level of compaction, which can hardly be explained with common coarse-grained models. It is possible that environmental effects that are difficult to simulate play a role here. Chromatin is a highly dynamic structure, and its architecture is constantly changing, be it through active processes such as the effect of cohesin investigated here or through thermodynamic interactions of nucleosomes as they are simulated in coarse-grained models. It will take a long time until we adequately understand these dynamic processes and their interplay

    Laboratory directed research and development. FY 1995 progress report

    Full text link
    corecore