1,097 research outputs found

    Review of Metaheuristics and Generalized Evolutionary Walk Algorithm

    Full text link
    Metaheuristic algorithms are often nature-inspired, and they are becoming very powerful in solving global optimization problems. More than a dozen of major metaheuristic algorithms have been developed over the last three decades, and there exist even more variants and hybrid of metaheuristics. This paper intends to provide an overview of nature-inspired metaheuristic algorithms, from a brief history to their applications. We try to analyze the main components of these algorithms and how and why they works. Then, we intend to provide a unified view of metaheuristics by proposing a generalized evolutionary walk algorithm (GEWA). Finally, we discuss some of the important open questions.Comment: 14 page

    Diversification-based learning in computing and optimization

    Get PDF
    Diversification-based learning (DBL) derives from a collection of principles and methods introduced in the field of metaheuristics that have broad applications in computing and optimization. We show that the DBL framework goes significantly beyond that of the more recent opposition-based learning (OBL) framework introduced in Tizhoosh (in: Proceedings of international conference on computational intelligence for modelling, control and automation, and international conference on intelligent agents, web technologies and internet commerce (CIMCA/IAWTIC-2005), pp 695–701, 2005), which has become the focus of numerous research initiatives in machine learning and metaheuristic optimization. We unify and extend earlier proposals in metaheuristic search (Glover, in Hao J-K, Lutton E, Ronald E, Schoenauer M, Snyers D (eds) Artificial evolution, Lecture notes in computer science, Springer, Berlin, vol 1363, pp 13–54, 1997; Glover and Laguna Tabu search, Springer, Berlin, 1997) to give a collection of approaches that are more flexible and comprehensive than OBL for creating intensification and diversification strategies in metaheuristic search. We also describe potential applications of DBL to various subfields of machine learning and optimization

    Greedy Randomized Adaptive Search and Variable Neighbourhood Search for the minimum labelling spanning tree problem

    Get PDF
    This paper studies heuristics for the minimum labelling spanning tree (MLST) problem. The purpose is to find a spanning tree using edges that are as similar as possible. Given an undirected labelled connected graph, the minimum labelling spanning tree problem seeks a spanning tree whose edges have the smallest number of distinct labels. This problem has been shown to be NP-hard. A Greedy Randomized Adaptive Search Procedure (GRASP) and a Variable Neighbourhood Search (VNS) are proposed in this paper. They are compared with other algorithms recommended in the literature: the Modified Genetic Algorithm and the Pilot Method. Nonparametric statistical tests show that the heuristics based on GRASP and VNS outperform the other algorithms tested. Furthermore, a comparison with the results provided by an exact approach shows that we may quickly obtain optimal or near-optimal solutions with the proposed heuristics

    Sensor networks security based on sensitive robots agents. A conceptual model

    Full text link
    Multi-agent systems are currently applied to solve complex problems. The security of networks is an eloquent example of a complex and difficult problem. A new model-concept Hybrid Sensitive Robot Metaheuristic for Intrusion Detection is introduced in the current paper. The proposed technique could be used with machine learning based intrusion detection techniques. The new model uses the reaction of virtual sensitive robots to different stigmergic variables in order to keep the tracks of the intruders when securing a sensor network.Comment: 5 page
    corecore