4,806 research outputs found

    Multi-task super resolution method for vector field critical points enhancement

    Get PDF
    It is a challenging task to handle the vector field visualization at local critical points. Generally, topological based methods firstly divide critical regions into different categories, and then process the different types of critical regions to improve the effect, which pipeline is complex. In the paper, a learning based multi-task super resolution (SR) method is proposed to improve the refinement of vector field, and enhance the visualization effect, especially at the critical region. In detail, the multi-task model consists of two important designs on task branches: one task is to simulate the interpolation of discrete vector fields based on an improved super-resolution network; and the other is a classification task to identify the types of critical vector fields. It is an efficient end-to-end architecture for both training and inferencing stages, which simplifies the pipeline of critical vector field visualization and improves the visualization effect. In experiment, we compare our method with both traditional interpolation and pure SR network on both simulation data and real data, and the reported results indicate our method lower the error and improve PSNR significantly

    Applications of Texture-Based Flow Visualization

    Get PDF

    Nonlinear prediction for circular filtering using Fourier series

    Get PDF
    While nonlinear filtering for circular quantities is closely related to nonlinear filtering on linear domains, the underlying manifold enables the development of novel filters that take advantage of the boundedness of the domain. Previously, we introduced Fourier filters that approximate the density or its square root using Fourier series. For these filters, we proposed filter steps for arbitrary likelihoods and prediction steps for the identity system model with additive noise. This paper adds the capability of handling arbitrary transition densities in the prediction step, which facilitates, e.g., the use of the filters for nonlinear systems with additive noise. In the evaluation, the new prediction steps for the Fourier filters outperform an SIR particle filter, a grid filter, and a nonlinear variant of the von Mises filter

    Kernel methods in genomics and computational biology

    Full text link
    Support vector machines and kernel methods are increasingly popular in genomics and computational biology, due to their good performance in real-world applications and strong modularity that makes them suitable to a wide range of problems, from the classification of tumors to the automatic annotation of proteins. Their ability to work in high dimension, to process non-vectorial data, and the natural framework they provide to integrate heterogeneous data are particularly relevant to various problems arising in computational biology. In this chapter we survey some of the most prominent applications published so far, highlighting the particular developments in kernel methods triggered by problems in biology, and mention a few promising research directions likely to expand in the future

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin
    • …
    corecore