3,063 research outputs found

    Evolutionary intelligent agents for e-commerce: Generic preference detection with feature analysis

    Get PDF
    Product recommendation and preference tracking systems have been adopted extensively in e-commerce businesses. However, the heterogeneity of product attributes results in undesired impediment for an efficient yet personalized e-commerce product brokering. Amid the assortment of product attributes, there are some intrinsic generic attributes having significant relation to a customer’s generic preference. This paper proposes a novel approach in the detection of generic product attributes through feature analysis. The objective is to provide an insight to the understanding of customers’ generic preference. Furthermore, a genetic algorithm is used to find the suitable feature weight set, hence reducing the rate of misclassification. A prototype has been implemented and the experimental results are promising

    Intelligent Product Brokering for E-Commerce: An Incremental Approach to Unaccounted Attribute Detection

    Get PDF
    This research concentrates on designing generic product-brokering agent to understand user preference towards a product category and recommends a list of products to the user according to the preference captured by the agent. The proposed solution is able to detect both quantifiable and non-quantifiable attributes through a user feedback system. Unlike previous approaches, this research allows the detection of unaccounted attributes that are not within the ontology of the system. No tedious change of the algorithm, database, or ontology is required when a new product attribute is introduced. This approach only requires the attribute to be within the description field of the product. The system analyzes the general product descriptions field and creates a list of candidate attributes affecting the user’s preference. A genetic algorithm verifies these candidate attributes and excess attributes are identified and filtered off. A prototype has been created and our results show positive results in the detection of unaccounted attributes affecting a user

    A novel Big Data analytics and intelligent technique to predict driver's intent

    Get PDF
    Modern age offers a great potential for automatically predicting the driver's intent through the increasing miniaturization of computing technologies, rapid advancements in communication technologies and continuous connectivity of heterogeneous smart objects. Inside the cabin and engine of modern cars, dedicated computer systems need to possess the ability to exploit the wealth of information generated by heterogeneous data sources with different contextual and conceptual representations. Processing and utilizing this diverse and voluminous data, involves many challenges concerning the design of the computational technique used to perform this task. In this paper, we investigate the various data sources available in the car and the surrounding environment, which can be utilized as inputs in order to predict driver's intent and behavior. As part of investigating these potential data sources, we conducted experiments on e-calendars for a large number of employees, and have reviewed a number of available geo referencing systems. Through the results of a statistical analysis and by computing location recognition accuracy results, we explored in detail the potential utilization of calendar location data to detect the driver's intentions. In order to exploit the numerous diverse data inputs available in modern vehicles, we investigate the suitability of different Computational Intelligence (CI) techniques, and propose a novel fuzzy computational modelling methodology. Finally, we outline the impact of applying advanced CI and Big Data analytics techniques in modern vehicles on the driver and society in general, and discuss ethical and legal issues arising from the deployment of intelligent self-learning cars

    Technology enablers for the implementation of Industry 4.0 to traditional manufacturing sectors: A review

    Get PDF
    The traditional manufacturing sectors (footwear, textiles and clothing, furniture and toys, among others) are based on small and medium enterprises with limited capacity on investing in modern production technologies. Although these sectors rely heavily on product customization and short manufacturing cycles, they are still not able to take full advantage of the fourth industrial revolution. Industry 4.0 surfaced to address the current challenges of shorter product life-cycles, highly customized products and stiff global competition. The new manufacturing paradigm supports the development of modular factory structures within a computerized Internet of Things environment. With Industry 4.0, rigid planning and production processes can be revolutionized. However, the computerization of manufacturing has a high degree of complexity and its implementation tends to be expensive, which goes against the reality of SMEs that power the traditional sectors. This paper reviews the main scientific-technological advances that have been developed in recent years in traditional sectors with the aim of facilitating the transition to the new industry standard.This research was supported by the Spanish Research Agency (AEI) and the European Regional Development Fund (ERDF) under the project CloudDriver4Industry TIN2017-89266-R

    Web Mining Functions in an Academic Search Application

    Get PDF
    This paper deals with Web mining and the different categories of Web mining like content, structure and usage mining. The application of Web mining in an academic search application has been discussed. The paper concludes with open problems related to Web mining. The present work can be a useful input to Web users, Web Administrators in a university environment.Database, HITS, IR, NLP, Web mining

    Personalization of Learning Materials for Mathematics Learning Using a Case-Based Reasoning Algorithm

    Get PDF
    Personalization is important to ensure that learning can cater to the needs of individual learners. The Intelligent Tutoring System (ITS) is a technology that can ease the personalization process; one of the most widely used algorithms in ITS is case-based reasoning (CBR). This study measures the ability of the CBR algorithm to give suggestions for the most suitable learning material based on specific information supplied by the user of the system. In order to test the ability of the application to recommend learning material, two versions of the application were created. The first version displayed the most suitable learning material, and the second version displayed the least preferable learning material. The results show that the first version of the application successfully assigns students to the most suitable learning material when compared with the second version

    State of the Industry 4.0 in the Andalusian food sector

    Get PDF
    The food industry is a key issue in the economic structure of Andalusia, due to both the weight and position of this industry in the economy and its advantages and potentials. The term Industry 4.0 carries many meanings. It seeks to describe the intelligent factory, with all the processes interconnected by Internet of things (IOT). Early advances in this field have involved the incorporation of greater flexibility and individualization of the manufacturing processes. The implementation of the framework proposed by Industry 4.0. is a need for the industry in general, and for Andalusian food industry in particular, and should be seen as a great opportunity of progress for the sector. It is expected that, along with others, the food and beverage industry will be pioneer in the adoption of flexible and individualized manufacturing processes. This work constitutes the state of the art, through bibliographic review, of the application of the proposed paradigm by the Industry 4.0. to the food industry.Telefónica, through the “Cátedra de Telefónica Inteligencia en la Red”Paloma Luna Garrid
    corecore