13 research outputs found

    An overview of artificial intelligence applications for power electronics

    Get PDF

    Model Predictive Control for Power Converters and Drives: Advances and Trends

    Get PDF
    Model predictive control (MPC) is a very attractive solution for controlling power electronic converters. The aim of this paper is to present and discuss the latest developments in MPC for power converters and drives, describing the current state of this control strategy and analyzing the new trends and challenges it presents when applied to power electronic systems. The paper revisits the operating principle of MPC and identifies three key elements in the MPC strategies, namely the prediction model, the cost function, and the optimization algorithm. This paper summarizes the most recent research concerning these elements, providing details about the different solutions proposed by the academic and industrial communitiesMinisterio de Economia y Competitividad TEC2016-78430-RConsejeria de Innovacion, Ciencia y Empresa (Junta de Andalucia) P11-TIC-707

    Design and Control of Electrical Motor Drives

    Get PDF
    Dear Colleagues, I am very happy to have this Special Issue of the journal Energies on the topic of Design and Control of Electrical Motor Drives published. Electrical motor drives are widely used in the industry, automation, transportation, and home appliances. Indeed, rolling mills, machine tools, high-speed trains, subway systems, elevators, electric vehicles, air conditioners, all depend on electrical motor drives.However, the production of effective and practical motors and drives requires flexibility in the regulation of current, torque, flux, acceleration, position, and speed. Without proper modeling, drive, and control, these motor drive systems cannot function effectively.To address these issues, we need to focus on the design, modeling, drive, and control of different types of motors, such as induction motors, permanent magnet synchronous motors, brushless DC motors, DC motors, synchronous reluctance motors, switched reluctance motors, flux-switching motors, linear motors, and step motors.Therefore, relevant research topics in this field of study include modeling electrical motor drives, both in transient and in steady-state, and designing control methods based on novel control strategies (e.g., PI controllers, fuzzy logic controllers, neural network controllers, predictive controllers, adaptive controllers, nonlinear controllers, etc.), with particular attention to transient responses, load disturbances, fault tolerance, and multi-motor drive techniques. This Special Issue include original contributions regarding recent developments and ideas in motor design, motor drive, and motor control. The topics include motor design, field-oriented control, torque control, reliability improvement, advanced controllers for motor drive systems, DSP-based sensorless motor drive systems, high-performance motor drive systems, high-efficiency motor drive systems, and practical applications of motor drive systems. I want to sincerely thank authors, reviewers, and staff members for their time and efforts. Prof. Dr. Tian-Hua Liu Guest Edito

    Maximum power extraction strategy for variable speed wind turbine system via neuro-adaptive generalized global sliding mode controller

    Get PDF
    The development and improvements in wind energy conversion systems (WECSs) are intensively focused these days because of its environment friendly nature. One of the attractive development is the maximum power extraction (MPE) subject to variations in wind speed. This paper has addressed the MPE in the presence of wind speed and parametric variation. This objective is met by designing a generalized global sliding mode control (GGSMC) for the tracking of wind turbine speed. The nonlinear drift terms and input channels, which generally evolves under uncertainties, are estimated using feed forward neural networks (FFNNs). The designed GGSMC algorithm enforced sliding mode from initial time with suppressed chattering. Therefore, the overall maximum power point tracking (MPPT) control is very robust from the start of the process which is always demanded in every practical scenario. The closed loop stability analysis, of the proposed design is rigorously presented and the simulations are carried out to authenticate the robust MPE.Izhar Ul Haq, Qudrat Khan, Ilyas Khan, Rini Akmeliawati, Kottakkaran Soopy Nisar, and Imran Kha

    Sliding Mode Control

    Get PDF
    The main objective of this monograph is to present a broad range of well worked out, recent application studies as well as theoretical contributions in the field of sliding mode control system analysis and design. The contributions presented here include new theoretical developments as well as successful applications of variable structure controllers primarily in the field of power electronics, electric drives and motion steering systems. They enrich the current state of the art, and motivate and encourage new ideas and solutions in the sliding mode control area

    Dynamic Bat-Control of a Redundant Ball Playing Robot

    Get PDF
    This thesis shows a control algorithm for coping with a ball batting task for an entertainment robot. The robot is a three jointed robot with a redundant degree of freedom and its name is Doggy . Doggy because of its dog-like costume. Design, mechanics and electronics were developed by us. DC-motors control the tooth belt driven joints, resulting in elasticities between the motor and link. Redundancy and elasticity have to be taken into account by our developed controller and are demanding control tasks. In this thesis we show the structure of the ball playing robot and how this structure can be described as a model. We distinguish two models: One model that includes a flexible bearing, the other does not. Both models are calibrated using the toolkit Sparse Least Squares on Manifolds (SLOM) - i.e. the parameters for the model are determined. Both calibrated models are compared to measurements of the real system. The model with the flexible bearing is used to implement a state estimator - based on a Kalman filter - on a microcontroller. This ensures real time estimation of the robot states. The estimated states are also compared with the measurements and are assessed. The estimated states represent the measurements well. In the core of this work we develop a Task Level Optimal Controller (TLOC), a model-predictive optimal controller based on the principles of a Linear Quadratic Regulator (LQR). We aim to play a ball back to an opponent precisely. We show how this task of playing a ball at a desired time with a desired velocity at a desired position can be embedded into the LQR principle. We use cost functions for the task description. In simulations, we show the functionality of the control concept, which consists of a linear part (on a microcontroller) and a nonlinear part (PC software). The linear part uses feedback gains which are calculated by the nonlinear part. The concept of the ball batting controller with precalculated feedback gains is evaluated on the robot. This shows successful batting motions. The entertainment aspect has been tested on the Open Campus Day at the University of Bremen and is summarized here shortly. Likewise, a jointly developed audience interaction by recognition of distinctive sounds is summarized herein. In this thesis we answer the question, if it is possible to define a rebound task for our robot within a controller and show the necessary steps for this

    Applications of Power Electronics:Volume 1

    Get PDF

    Integration of Active Systems for a Global Chassis Control Design

    Get PDF
    Vehicle chassis control active systems (braking, suspension, steering and driveline), from the first ABS/ESC control unit to the current advanced driver assistance systems (ADAS), are progressively revolutionizing the way of thinking and designing the vehicle, improving its interaction with the surrounding world (V2V and V2X) and have led to excellent results in terms of safety and performances (dynamic behavior and drivability). They are usually referred as intelligent vehicles due to a software/hardware architecture able to assist the driver for achieving specific safety margin and/or optimal vehicle dynamic behavior. Moreover, industrial and academic communities agree that these technologies will progress till the diffusion of the so called autonomous cars which are able to drive robustly in a wide range of traffic scenarios. Different autonomous vehicles are already available in Europe, Japan and United States and several solutions have been proposed for smart cities and/or small public area like university campus. In this context, the present research activity aims at improving safety, comfort and performances through the integration of global active chassis control: the purposes are to study, design and implement control strategies to support the driver for achieving one or more final target among safety, comfort and performance. Specifically, the vehicle subsystems that are involved in the present research for active systems development are the steering system, the propulsion system, the transmission and the braking system. The thesis is divided into three sections related to different applications of active systems that, starting from a robust theoretical design procedure, are strongly supported by objective experimental results obtained fromHardware In the Loop (HIL) test rigs and/or proving ground testing sessions. The first chapter is dedicated to one of the most discussed topic about autonomous driving due to its impact from the social point of view and in terms of human error mitigation when the driver is not prompt enough. In particular, it is here analyzed the automated steering control which is already implemented for automatic parking and that could represent also a key element for conventional passenger car in emergency situation where a braking intervention is not enough for avoiding an imminent collision. The activity is focused on different steering controllers design and their implementation for an autonomous vehicle; an obstacle collision avoidance adaptation is introduced for future implementations. Three different controllers, Proportional Derivative (PD), PD+Feedforward (FF) e PD+Integral Sliding Mode (ISM), are designed for tracking a reference trajectory that can be modified in real-time for obstacle avoidance purposes. Furthermore, PD+FF and PD+ISM logic are able to improve the tracking performances of automated steering during cornering maneuvers, relevant fromthe collision avoidance point of view. Path tracking control and its obstacle avoidance enhancement is also shown during experimental tests executed in a proving ground through its implementation for an autonomous vehicle demonstrator. Even if the activity is presented for an autonomous vehicle, the active control can be developed also for a conventional vehicle equipped with an Electronic Power Steering (EPS) or Steer-by-wire architectures. The second chapter describes a Torque Vectoring (TV) control strategy, applied to a Fully Electric Vehicle (FEV) with four independent electric motor (one for each wheel), that aims to optimize the lateral vehicle behavior by a proper electric motor torque regulation. A yaw rate controller is presented and designed in order to achieve a desired steady-state lateral behaviour of the car (handling task). Furthermore, a sideslip angle controller is also integrated to preserve vehicle stability during emergency situations (safety task). LQR, LQR+FF and ISM strategies are formulated and explained for yaw rate and concurrent yaw rate/sideslip angle control techniques also comparing their advantages and weakness points. The TV strategy is implemented and calibrated on a FEV demonstrator by executing experimental maneuvers (step steer, skid pad, lane change and sequence of step steers) thus proving the efficacy of the proposed controller and the safety contribution guaranteed by the sideslip control. The TV could be also applied for internal combustion engine driven vehicles by installing specific torque vectoring differentials, able to distribute the torque generated by the engine to each wheel independently. The TV strategy evaluated in the second chapter can be influenced by the presence of a transmission between themotor (or the engine) and wheels (where the torque control is supposed to be designed): in addition to the mechanical delay introduced by transmission components, the presence of gears backlashes can provoke undesired noises and vibrations in presence of torque sign inversion. The last chapter is thus related to a new method for noises and vibration attenuation for a Dual Clutch Transmission (DCT). This is achieved in a new way by integrating the powertrain control with the braking system control, which are historically and conventionally analyzed and designed separately. It is showed that a torsional preload effect can be obtained on transmission components by increasing the wheel torque and concurrently applying a braking wheel torque. For this reason, a pressure following controller is presented and validated through a Hardware In the Loop (HIL) test rig in order to track a reference value of braking torque thus ensuring the desired preload effect and noises reduction. Experimental results demonstrates the efficacy of the controller, also opening new scenario for global chassis control design. Finally, some general conclusions are drawn and possible future activities and recommendations are proposed for further investigations or improvements with respect to the results shown in the present work

    RECENT TECHNIQUES ON OBSERVER DESIGN FOR DISTURBANCE ESTIMATION AND REJECTION IN PERMANENT MAGNET SYNCHRONOUS MOTORS

    Get PDF
    Permanent magnet synchronous machines (PMSMs) (either motor or generator) have attracted attention of research community comparing to other types of AC machines in the recent two decades. PMSMs are preferable than other AC machines in terms of large power-factor, broad speed of operation, compact proportions, and effective operation. Unfortunately, different sources of nonlinearities, model uncertainties, and external perturbations determine severity in a design of accurate speed control scheme for PMSMs. In the era of developing science and technologies, many advanced control solutions are proposed to control PMSMs. Although new solutions show their advantages comparing to traditional methods in terms of performance evaluation, practical realization of those algorithms could require expensive hardware with high computational capabilities. Furthermore, people in industry with less knowledge about the motor control may experience difficulties in using such advanced controllers on their own. Traditional PI/PID control schemes still work as a major control technique in modern industry, and in motor control as well. Numerous positive facts about the PI/PID schemes make such superiority of these control schemes. Firstly, the PI/PID can be implemented easily on most industrial software and hardware components. Secondly, while its scheme has clear mechanism of operation, most industrial processes could be controlled via the PI/PID scheme. These schemes are good in terms of small number of parameters to tune and tuning process itself could be very straightforward. Finally, implementation of the PI/PID controllers would require smaller time comparing to most proposed complex control solutions. It is studied that the traditional PI/PID controllers usually cannot deal with unpredictable disturbances, which in turn leads to degraded performance of an overall control system. Inspired by the advantages and widespread application of PI/PID control structure in industry, we propose a disturbance observer based composite control scheme which uses the PI-like controller for the feedback regulation and disturbance observer for estimation of lumped disturbances presented in a PMSM control system. Under this circumstance, this thesis work proposes three different control solutions for PMSM such as High-order disturbance observer-based composite control (HDOBCC), Disturbance rejection PI (DR-PI) control, and Hierarchical optimal disturbance observer-based control (HODOBC). Furthermore, to deeply understand the similarity and difference between the traditional disturbance observer-based control (DOBC) and active-disturbance rejection control (ADRC) schemes, this thesis also presents results of unification of these two control approaches in the speed control of a PMSM. The HDOBCC as the first method proposed in this thesis is designed to improve reference speed tracking performance of a PMSM under various operational conditions. A structure of the HDOBCC comprises a fuzzy-PI controller in a feedback stabilization part and novel high-order disturbance observer in a feedforward compensation part of the speed control system. The proposed controller is designed based on the research questions such as: firstly, although a fixed gain traditional PI controller is able to present satisfactory performance at some extent, still it does not guarantee such performance when sudden disturbances occur in a system; secondly, many disturbance observers designed for a PMSM in literature consider only a load torque as a disturbance, neglecting model uncertainties and parameter variations in design stage. Therefore, the HDOBCC is proposed such that it utilizes a fuzzy approach to determine parameters of the PI controller to overcome limitations of the fixed gain PI controller. Furthermore, the proposed scheme includes a high-order disturbance observer, which estimates not only the load torque, but also disturbances due to model uncertainties and parameter variations. Moreover, extended simulation and experimental studies are conducted to affirm performance of the HDOBCC under various form of the load torque. In addition to commonly tested step form of a load torque, severe forms of the load torque such as triangular form and sinusoidal form are tested with the proposed controller. Stability analysis of the closed-loop HDOBCC system is further provided. The next proposed method, DR-PI control, is designed by seeking answer for questions such as: firstly, although the traditional DOBC scheme applied for PMSM shows reasonable results in a PMSM control, its design can be limited to known actual parameters of the PMSM. In practice, actual parameters are usually not available, hence it could be hard to design the traditional DOBC in the absence of a plant information; secondly, for tuning a PI controller the traditional Ziegler-Nichols tuning approach still remains as one of the popular tuning approaches, however it does not give a rigorous explanation on selection of parameters during its design. Consequently, to answer these questions, the DR-PI control is designed for the PMSM speed control. The DR-PI control is designed such that it has a simple PI-like structure with intrinsic disturbance rejection mechanism determined by the parameters of a filtering element, desired plant model, and desired closed-loop system. Simulation and experimental validations are provided to validate the performance of the DR-PI. Furthermore, gain tuning mechanism and stability analysis of the closed-loop DR-PI-based speed control are also presented. The HODOBC scheme as a third proposed control scheme targets on the next research questions as: first, parameters of the traditional PI controller are mostly obtained by trial-and-error approach, which in turn may not guarantee satisfactory results; in a cascaded PMSM control, the outer speed loop performance highly depends on the performance of the inner current loop. The well-tuned speed control loop may degrade in performance, if the inner current loop is not tuned properly. To address these questions, we propose the HODOBC scheme, which consists of optimal PIlike controller in the feedback stabilization part and optimal extended-state observer (ESO) in the disturbance compensation part. The proposed HODOBC showed better performance when it is compared with other traditional controllers via experiments. Stability analysis is provided via the root locus approach. The study on unification of the DOBC and ADRC schemes has the following research question: the DOBC and ADRC are both used in estimation of total disturbance, but these two schemes are considered differently in literature. Hence, the study of both scheme is conducted to show the condition at which these two schemes show identical performance. The analysis of the traditional DOBC and ADRC schemes concludes that both scheme are equivalent in terms of performance characteristics if the dynamical delays of disturbance observers in each scheme are same. The results of analysis reveal that both scheme can be utilized to design a robust control system for PMSM, i.e. once the gains of disturbance observers can be calculated under the DOBC framework, further the disturbance rejection mechanism can be achieved via the ADRC framework. The results of PMSM control with the proposed control schemes have been tested on the Lucas-Nuelle DSP-based experimental setup
    corecore