5,465 research outputs found

    Intelligent Packaging Systems: Sensors and Nanosensors to Monitor Food Quality and Safety

    Get PDF
    IndexaciĂłn: Web of Science y Scopus.The application of nanotechnology in different areas of food packaging is an emerging field that will grow rapidly in the coming years. Advances in food safety have yielded promising results leading to the development of intelligent packaging (IP). By these containers, it is possible to monitor and provide information of the condition of food, packaging, or the environment. This article describes the role of the different concepts of intelligent packaging. It is possible that this new technology could reach enhancing food safety, improving pathogen detection time, and controlling the quality of food and packaging throughout the supply chain.https://www.hindawi.com/journals/js/2016/4046061/cta

    Event program

    Get PDF
    UNLV Undergraduates from all departments, programs and colleges participated in a campus-wide symposium on April 16, 2011. Undergraduate posters from all disciplines and also oral presentations of research activities, readings and other creative endeavors were exhibited throughout the festival

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 333)

    Get PDF
    This bibliography lists 122 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during January, 1990. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Event program

    Full text link
    UNLV Undergraduates from all departments, programs and colleges participated in a campus-wide symposium on April 16, 2011. Undergraduate posters from all disciplines and also oral presentations of research activities, readings and other creative endeavors were exhibited throughout the festival

    Adaptive laboratory evolution of a genome-reduced Escherichia coli.

    Get PDF
    Synthetic biology aims to design and construct bacterial genomes harboring the minimum number of genes required for self-replicable life. However, the genome-reduced bacteria often show impaired growth under laboratory conditions that cannot be understood based on the removed genes. The unexpected phenotypes highlight our limited understanding of bacterial genomes. Here, we deploy adaptive laboratory evolution (ALE) to re-optimize growth performance of a genome-reduced strain. The basis for suboptimal growth is the imbalanced metabolism that is rewired during ALE. The metabolic rewiring is globally orchestrated by mutations in rpoD altering promoter binding of RNA polymerase. Lastly, the evolved strain has no translational buffering capacity, enabling effective translation of abundant mRNAs. Multi-omic analysis of the evolved strain reveals transcriptome- and translatome-wide remodeling that orchestrate metabolism and growth. These results reveal that failure of prediction may not be associated with understanding individual genes, but rather from insufficient understanding of the strain's systems biology

    Municipal wastewater treatment with pond technology : historical review and future outlook

    No full text
    Facing an unprecedented population growth, it is difficult to overstress the assets for wastewater treatment of waste stabilization ponds (WSPs), i.e. high removal efficiency, simplicity, and low cost, which have been recognized by numerous scientists and operators. However, stricter discharge standards, changes in wastewater compounds, high emissions of greenhouse gases, and elevated land prices have led to their replacements in many places. This review aims at delivering a comprehensive overview of the historical development and current state of WSPs, and providing further insights to deal with their limitations in the future. The 21st century is witnessing changes in the way of approaching conventional problems in pond technology, in which WSPs should no longer be considered as a low treatment technology. Advanced models and technologies have been integrated for better design, control, and management. The roles of algae, which have been crucial as solar-powered aeration, will continue being a key solution. Yet, the separation of suspended algae to avoid deterioration of the effluent remains a major challenge in WSPs while in the case of high algal rate pond, further research is needed to maximize algal growth yield, select proper strains, and optimize harvesting methods to put algal biomass production in practice. Significant gaps need to be filled in understanding mechanisms of greenhouse gas emission, climate change mitigation, pond ecosystem services, and the fate and toxicity of emerging contaminants. From these insights, adaptation strategies are developed to deal with new opportunities and future challenges

    Advances of nanotechnology in agro-environmental studies

    Get PDF
    With the increase in the world population and the demand for food, new agricultural practices have been developed to improve food production through the use of more effective pesticides and fertilisers. These technologies can lead to an uncontrolled release of undesired substances into the environment, with the potential to contaminate soil and groundwater. Today, nanotechnology represents a promising approach to improve agricultural production and remediate polluted sites. This paper reviews the recent applications of nanotechnologies in agro-environmental studies with particular attention to the fate of nanomaterials once introduced in water and soil, to the advantages of their use and their possible toxicology. Findings show that the use of nanomaterials can improve the quality of the environment and help detect and remediate polluted sites. Only a small number of nanomaterials demonstrated potential toxic effects. These are discussed in detail

    Multiple Intelligent Agents for Manufacturing Intensification (MIAMI): A Platform for Ranking Clonal Variation in Upstream Bioprocess Development

    Get PDF
    Antibody-based therapeutics are an important class of biotherapeutics for therapeutic applications. With the rising demand and increase in biotherapeutic products on the market, there lies the need for rapid bioprocess development. Clone selection is a critical and time-consuming step in upstream bioprocess development and it is a critical step to execute accurately. A Multiple Intelligent Agents for Manufacturing Intensification (MIAMI) is proposed to process raw data and evaluate clones of three commonly used host cells, Chinese Hamster Ovary (CHO), Escherichia coli (E. coli), and Pichia pastoris (P. pastoris). A search conducted for an IP-free protein sequence yielded the Anti-hepatitis B antibody. The whole antibody sequence was truncated to create a Fab’ fragment. Gene designs for three commonly used host cells, CHO, E. coli, and P. pastoris were created using the IP-free Anti-hepatitis B Fab’ fragment. The development of MIAMI identifies and addresses the necessity of creating a sophisticated code that evaluates clonal ranking based upon data sets. These data sets were collected using the IP-free Anti-hepatitis B gene designs and an existing AV4 gene design. The AV4 gene design was transformed into P. pastoris and repurposed as an inverse methanol detector. In 50mL shake flask culture, green fluorescence protein was detected when cultivating the AV4 strain using glycerol and sorbitol carbon source, while protein transcription was inhibited when using a methanol carbon source. Data collected from cultivating the AV4 strain in 800µL microtiter plates was used to develop the MIAMI software. The Anti-hepatitis B gene designs were established and characterized in 50mL shake flasks for E. coli and P. pastoris and a preliminary attempt to establish the gene design CHO. Using the data collected from automated cultivation of 8 different clones of Anti-hepatitis B E. coli and P. pastoris strains in 800µL microtiter plates scale using the TECAN, a manual ranking of the clones was performed. Scaling the cultivation up to 200mL DASGIPs microbioreactors, clonal ranking for both strains remained unchanged. A code was written in python for the processing of raw data. This was demonstrated on the collected HPLC data sets for the Anti-hepatitis B E. coli and P. pastoris strains, and the flow cytometer data set for the AV4 strain. Multiple agents were created for the development of MIAMI. An assay agent was created for analysing raw HPLC and flow cytometry data to identify and remove unwanted clonal variations. A scanning algorithm calculated the mean and standard deviation of the yields at three consecutive time points to identify a period of stable yield. A ranking algorithm takes into consideration the maximum stable yield achieved and the variability in the data point, giving these two factors a 75% and 25% weighting, MIAMI identifies the best performing clone. The MIAMI ranking came to the same conclusion as manual human ranking. The effectiveness of MIAMI was validated on the Anti-hepatitis B E. coli strain, being able to correctly identify a top performing clone with an optimal induction time, with a conservative estimate of 87% decrease in time taken when compared to manual evaluation. The MIAMI software significantly improved the timeliness of bioprocess development by accurately screening and evaluating clones. This frees up the time of the user while removing potential sources of human error. With the incorporation of further bioprocesses, MIAMI will become a powerful and effective tool for bioprocess development

    Proceedings of Abstracts Engineering and Computer Science Research Conference 2019

    Get PDF
    © 2019 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Note: Keynote: Fluorescence visualisation to evaluate effectiveness of personal protective equipment for infection control is © 2019 Crown copyright and so is licensed under the Open Government Licence v3.0. Under this licence users are permitted to copy, publish, distribute and transmit the Information; adapt the Information; exploit the Information commercially and non-commercially for example, by combining it with other Information, or by including it in your own product or application. Where you do any of the above you must acknowledge the source of the Information in your product or application by including or linking to any attribution statement specified by the Information Provider(s) and, where possible, provide a link to this licence: http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/This book is the record of abstracts submitted and accepted for presentation at the Inaugural Engineering and Computer Science Research Conference held 17th April 2019 at the University of Hertfordshire, Hatfield, UK. This conference is a local event aiming at bringing together the research students, staff and eminent external guests to celebrate Engineering and Computer Science Research at the University of Hertfordshire. The ECS Research Conference aims to showcase the broad landscape of research taking place in the School of Engineering and Computer Science. The 2019 conference was articulated around three topical cross-disciplinary themes: Make and Preserve the Future; Connect the People and Cities; and Protect and Care
    • …
    corecore