23,272 research outputs found

    Architecture and Design of Medical Processor Units for Medical Networks

    Full text link
    This paper introduces analogical and deductive methodologies for the design medical processor units (MPUs). From the study of evolution of numerous earlier processors, we derive the basis for the architecture of MPUs. These specialized processors perform unique medical functions encoded as medical operational codes (mopcs). From a pragmatic perspective, MPUs function very close to CPUs. Both processors have unique operation codes that command the hardware to perform a distinct chain of subprocesses upon operands and generate a specific result unique to the opcode and the operand(s). In medical environments, MPU decodes the mopcs and executes a series of medical sub-processes and sends out secondary commands to the medical machine. Whereas operands in a typical computer system are numerical and logical entities, the operands in medical machine are objects such as such as patients, blood samples, tissues, operating rooms, medical staff, medical bills, patient payments, etc. We follow the functional overlap between the two processes and evolve the design of medical computer systems and networks.Comment: 17 page

    Knowledge Graph semantic enhancement of input data for improving AI

    Full text link
    Intelligent systems designed using machine learning algorithms require a large number of labeled data. Background knowledge provides complementary, real world factual information that can augment the limited labeled data to train a machine learning algorithm. The term Knowledge Graph (KG) is in vogue as for many practical applications, it is convenient and useful to organize this background knowledge in the form of a graph. Recent academic research and implemented industrial intelligent systems have shown promising performance for machine learning algorithms that combine training data with a knowledge graph. In this article, we discuss the use of relevant KGs to enhance input data for two applications that use machine learning -- recommendation and community detection. The KG improves both accuracy and explainability

    Mapping Big Data into Knowledge Space with Cognitive Cyber-Infrastructure

    Full text link
    Big data research has attracted great attention in science, technology, industry and society. It is developing with the evolving scientific paradigm, the fourth industrial revolution, and the transformational innovation of technologies. However, its nature and fundamental challenge have not been recognized, and its own methodology has not been formed. This paper explores and answers the following questions: What is big data? What are the basic methods for representing, managing and analyzing big data? What is the relationship between big data and knowledge? Can we find a mapping from big data into knowledge space? What kind of infrastructure is required to support not only big data management and analysis but also knowledge discovery, sharing and management? What is the relationship between big data and science paradigm? What is the nature and fundamental challenge of big data computing? A multi-dimensional perspective is presented toward a methodology of big data computing.Comment: 59 page

    Integrating building and urban semantics to empower smart water solutions

    Get PDF
    Current urban water research involves intelligent sensing, systems integration, proactive users and data-driven management through advanced analytics. The convergence of building information modeling with the smart water field provides an opportunity to transcend existing operational barriers. Such research would pave the way for demand-side management, active consumers, and demand-optimized networks, through interoperability and a system of systems approach. This paper presents a semantic knowledge management service and domain ontology which support a novel cloud-edge solution, by unifying domestic socio-technical water systems with clean and waste networks at an urban scale, to deliver value-added services for consumers and network operators. The web service integrates state of the art sensing, data analytics and middleware components. We propose an ontology for the domain which describes smart homes, smart metering, telemetry, and geographic information systems, alongside social concepts. This integrates previously isolated systems as well as supply and demand-side interventions, to improve system performance. A use case of demand-optimized management is introduced, and smart home application interoperability is demonstrated, before the performance of the semantic web service is presented and compared to alternatives. Our findings suggest that semantic web technologies and IoT can merge to bring together large data models with dynamic data streams, to support powerful applications in the operational phase of built environment systems
    • …
    corecore