2,842 research outputs found

    Bridges Structural Health Monitoring and Deterioration Detection Synthesis of Knowledge and Technology

    Get PDF
    INE/AUTC 10.0

    Advanced Techniques and Efficiency Assessment of Mechanical Processing

    Get PDF
    Mechanical processing is just one step in the value chain of metal production, but to some exten,t it determines an effectiveness of separation through suitable preparation of the raw material for beneficiation processes through production of required particle sze composition and useful mineral liberation. The issue is mostly related to techniques of comminution and size classification, but it also concerns methods of gravity separation, as well as modeling and optimization. Technological and economic assessment supplements the issue

    Active PinScreen: Exploring Spatio-Temporal Tactile Feedbackfor Multi-Finger Interaction

    Get PDF
    Multiple fingers are often used for efficient interaction with handheld computing devices. Currently, any tactile feedback provided is felt on the finger pad or the palm with coarse granularity. In contrast, we present a new tactile feedback technique, Active PinScreen, that applies localised stimuli on multiple fingers with fine spatial and temporal resolution. The tactile screen uses an array of solenoid-actuated magnetic pins with millimetre scale form-factor which could be deployed for back-of-device handheld use without instrumenting the user. As well as presenting a detailed description of the prototype, we provide the potential design configurations and the applications of the Active PinScreen and evaluate the human factors of tactile interaction with multiple fingers in a controlled user evaluation. The results of our study show a high recognition rate for directional and patterned stimulation across different grip orientations as well as within- and between- fingers. We end the paper with a discussion of our main findings, limitations in the current design and directions for future work

    Particle-scale numerical study on screening processes

    Get PDF
    The present study aimed to increase the understanding of the industrial screening process by using the discrete element method simulation (DEM) and machine learning modelling. Thus, the study focused on understanding the fundamentals of the complicated screening processes by investigating the process model with different controlling factors through particle-scale analysis. The particle-scale analysis was also linked to several macroscopic models and screening processes such as percolation of particles under vibration, the local passing of particles from the screen, choking of screening, non-spherical shaped particles contact detection and packing and machine learning modelling. The computational and theoretical analyses as well as machine leaning helped to clarify the use of particle-scale analysis and screening processes in several areas. The outcomes of this thesis include: (i) the percolation of particles under vibration and the machine learning modelling of percolation velocity to predict the size ratio threshold; (ii) a better understanding of screening process based on local passing of inclined and multi-deck screen and physics informed machine learning modelling to predict the particles passing; (iii) a logical model to predict the choking judgement of screen while combining the numerical results and machine learning and (iv) a novel contact force model for non-spherical particles by Fourier transformation and packing. The research in this thesis is useful for the fundamental understanding of the effect of particles’ contact force, operational conditions, particle properties, percolation and sieving on the screening process. Moreover, the novel process models based on artificial intelligence modelling, DEM simulation, and physics laws can help the design, control and optimisation of screening processes

    Estimating pilots’ cognitive load from ocular parameters through simulation and in-flight studies

    Get PDF
    Eye tracking is the process of measuring either the point of gaze (where one is looking) or the motion of an eye relative to the head. This paper investigated use of eye gaze trackers in military aviation environment to automatically estimate pilot’s cognitive load from ocular parameters. We used a fixed base variable stability flight simulator with longitudinal tracking task and collected data from 14 military pilots. In a second study, we undertook three test flights with a BAES Hawk Trainer aircraft doing air to ground attack training missions and constant G level turn maneuvers up to +5G. Our study found that ocular parameters like rate of fixation is significantly different in different flying conditions and significantly correlate with altitude gradient during air to ground dive training task, normal load factor (G) of the aircraft during constant G level turn maneuvers and pilot’s control inceptor and tracking error in simulation tasks. Results from our studies can be used for real time estimation of pilots’ cognitive load, providing suitable warnings and alerts to the pilot in cockpit and training of military pilots on cognitive load management during operational missions

    Flexible Automation and Intelligent Manufacturing: The Human-Data-Technology Nexus

    Get PDF
    This is an open access book. It gathers the first volume of the proceedings of the 31st edition of the International Conference on Flexible Automation and Intelligent Manufacturing, FAIM 2022, held on June 19 – 23, 2022, in Detroit, Michigan, USA. Covering four thematic areas including Manufacturing Processes, Machine Tools, Manufacturing Systems, and Enabling Technologies, it reports on advanced manufacturing processes, and innovative materials for 3D printing, applications of machine learning, artificial intelligence and mixed reality in various production sectors, as well as important issues in human-robot collaboration, including methods for improving safety. Contributions also cover strategies to improve quality control, supply chain management and training in the manufacturing industry, and methods supporting circular supply chain and sustainable manufacturing. All in all, this book provides academicians, engineers and professionals with extensive information on both scientific and industrial advances in the converging fields of manufacturing, production, and automation

    Design of Cognitive Interfaces for Personal Informatics Feedback

    Get PDF

    Flexible Automation and Intelligent Manufacturing: The Human-Data-Technology Nexus

    Get PDF
    This is an open access book. It gathers the first volume of the proceedings of the 31st edition of the International Conference on Flexible Automation and Intelligent Manufacturing, FAIM 2022, held on June 19 – 23, 2022, in Detroit, Michigan, USA. Covering four thematic areas including Manufacturing Processes, Machine Tools, Manufacturing Systems, and Enabling Technologies, it reports on advanced manufacturing processes, and innovative materials for 3D printing, applications of machine learning, artificial intelligence and mixed reality in various production sectors, as well as important issues in human-robot collaboration, including methods for improving safety. Contributions also cover strategies to improve quality control, supply chain management and training in the manufacturing industry, and methods supporting circular supply chain and sustainable manufacturing. All in all, this book provides academicians, engineers and professionals with extensive information on both scientific and industrial advances in the converging fields of manufacturing, production, and automation
    corecore