193 research outputs found

    World Modeling for Intelligent Autonomous Systems

    Get PDF
    The functioning of intelligent autonomous systems requires constant situation awareness and cognition analysis. Thus, it needs a memory structure that contains a description of the surrounding environment (world model) and serves as a central information hub. This book presents a row of theoretical and experimental results in the field of world modeling. This includes areas of dynamic and prior knowledge modeling, information fusion, management and qualitative/quantitative information analysis

    World Modeling for Intelligent Autonomous Systems

    Get PDF
    The functioning of intelligent autonomous systems requires constant situation awareness and cognition analysis. Thus, it needs a memory structure that contains a description of the surrounding environment (world model) and serves as a central information hub. This book presents a row of theoretical and experimental results in the field of world modeling. This includes areas of dynamic and prior knowledge modeling, information fusion, management and qualitative/quantitative information analysis

    Issues in the Development of Conversation Dialog for Humanoid Nursing Partner Robots in Long-Term Care

    Get PDF
    The purpose of this chapter is to explore the issues of development of conversational dialog of robots for nursing, especially for long-term care, and to forecast humanoid nursing partner robots (HNRs) introduced into clinical practice. In order to satisfy the required performance of HNRs, it is important that anthropomorphic robots act with high-quality conversational dialogic functions. As for its hardware, by allowing independent range of action and degree of freedom, the burden of quality exerted in human-robot communication is reduced, thereby unburdening nurses and professional caregivers. Furthermore, it is critical to develop a friendlier type of robot by equipping it with non-verbal emotive expressions that older people can perceive. If these functions are conjoined, anthropomorphic intelligent robots will serve as possible instructors, particularly for rehabilitation and recreation activities of older people. In this way, more than ever before, the HNRs will play an active role in healthcare and in the welfare fields

    Conversational AI and Knowledge Graphs for Social Robot Interaction

    Get PDF
    The paper describes an approach that combines work from three fields with previously separate research commu-nities: social robotics, conversational AI, and graph databases. The aim is to develop a generic framework in which a variety of social robots can provide high-quality information to users by accessing semantically-rich knowledge graphs about multiple different domains. An example implementation uses a Furhat robot with Rasa open source conversational AI and knowledge graphs in Neo4j graph databases.Peer reviewe

    World Modeling for Intelligent Autonomous Systems

    Get PDF
    Within the scope of this work, we have attained a row of theoretical and experimental results in the field of world modeling as well as gathered significant experience and expertise. The covered topics include concepts and approaches for dynamic and prior knowledge modeling, information association, fusion and management as well as their practical realization and experimental evaluation

    A three-layer model of source code comprehension

    Get PDF
    In this paper we first propose a source code comprehension model built as a hierarchy of three abstraction levels from the source code to the purpose (goal) of the program. The elements belonging to each layer have been precisely defined as well as their links to the elements in the adjacent layers. Consequently this model allows to bridge the semantic gap between the purpose of the program defined in business terms and the code that implements it. The model leverages two ontologies: an action ontology, which is specific to our approach, and a domain concept ontology. Next this model has been implemented as a tool under Eclipse and two experiments have been performed to assess the relevance of our approach in the maintenance of a large-scale program. The results of this experiment are very encouraging. The contribution of the paper is the presentation of our program comprehension model built on a novel approach based on an action ontology, the description of the tool we developed to assess the relevance of model and the testing of the latter with two controlled experiments

    An ontology system for rehabilitation robotics

    Get PDF
    Representing the available information about rehabilitation robots in a structured form, like ontologies, facilitates access to various kinds of information about the existing robots, and thus it is important both from the point of view of rehabilitation robotics and from the point of view of physical medicine. Rehabilitation robotics researchers can learn various properties of the existing robots and access to the related publications to further improve the state-of-the-art. Physical medicine experts can find information about rehabilitation robots and related publications (possibly including results of clinical studies) to better identify the right robot for a particular therapy or patient population. Therefore, considering also the advantages of ontologies and ontological reasoning, such as interoperability of various heterogenous knowledge resources (e.g., patient databases or disease ontologies), such an ontology provides the underlying mechanisms for translational physical medicine, from bench-to-bed and back, and personalized rehabilitation robotics. In this thesis, we introduce the first formal rehabilitation robotics ontology, called RehabRobo-Onto, to represent information about rehabilitation robots and their properties. We have designed and developed RehabRobo-Onto in OWL, collaborating with experts in robotics and in physical medicine. We have also built a software (called RehabRobo- Query) with an easy-to-use intelligent user-interface that allows robot designers to add/modify information about their rehabilitation robots to/from RehabRobo-Onto. With RehabRobo-Query, the experts do not need to know about the logic-based ontology languages, or have experience with the existing Semantic Web technologies or logic-based ontological reasoners. RehabRobo-Query is made available on the cloud, utilizing Amazon Web services, so that rehabilitation robot designers around the world can add/modify information about their robots in RehabRobo-Onto, and rehabilitation robot designers and physical medicine experts around the world can access the knowledge in RehabRobo-Onto by means of questions about robots, in natural language, with the guide of the intelligent userinterface of RehabRobo-Query. The ontology system consisting of RehabRobo-Onto and RehabRobo- Query is of great value to robot designers as well as physical therapists and medical doctors. On the one hand, robot designers can access various properties of the existing robots and to the related publications to further improve the state-of-the-art. On the other hand, physical therapists and medical doctors can utilize the ontology to compare rehabilitation robots and to identify the ones that serve best to cover their needs, or to evaluate the effects of various devices for targeted joint exercises on patients with specific disorders
    corecore