1,567 research outputs found

    Effects of Weather Related Safety Messages on the Motorway Traffic Parameters

    Get PDF
    Intelligent transport systems have a huge importance during adverse weather conditions. These systems call the drivers’ attention to possible dangers by the use of variable message signs installed along the motorways. Several researchers have dealt with the connection of weather and traffic safety in the last decades, but they have not investigated the effects of weather related messages. This paper examines the impact of weather-related warning messages on traffic in adverse weather circumstances on the Hungarian motorways. Three independent databases were analyzed in order to compare the speed-reducing effect of specific signs during different weather events and precipitate intensities

    An Empirical Study to Investigate the Effect of Air Density Changes on the DSRC Performance

    Get PDF
    The primary role of Intelligent Transportation Systems (ITS) system is to implement Advanced Driver Assistance Services (ADAS) such as pedestrian detection, fog detection and collisions avoidance. These services rely on detecting and communicating the environment conditions such as heavy rain or snow with nearby vehicles to improve the driver\u27s visibility. ITS systems rely on DSRC to communicate this information via a Vehicle-to-Vehicle (V2V) or Vehicle-to-Infrastructure (V2I) communications architectures. DSCR performance may be susceptible to environmental changes such as air density, gravitation (gravitational acceleration), air temperature, atmospheric pressure, humidity, and precipitation. The goal of this research is to investigate whether the DSRC performance persist with respect to air density changes in a foggy environment. Simulation experiments are setup using PreScan to study the influence of changing the air density on the DSRC performance in a foggy environment using V2V communications. The PreScan simulation experiments are carried out over a wide range of air density levels that start from an extremely low value of (0.05 kg/m3), a normal air density level of 1.28 kg/m3 to a high altitude with air density level of (50 kg/m3). The study uses this wide range of air density levels to allow us to determine the influence of the air density on the DSRC performance and explore any performance inconsistency if there is any. The research findings proved that the DSRC performance can persist through air density changes, which helps to make up for lost human visibility on roads during foggy times. This finding aims to promote safe highway operations in foggy conditions

    Map-Guided Curriculum Domain Adaptation and Uncertainty-Aware Evaluation for Semantic Nighttime Image Segmentation

    Full text link
    We address the problem of semantic nighttime image segmentation and improve the state-of-the-art, by adapting daytime models to nighttime without using nighttime annotations. Moreover, we design a new evaluation framework to address the substantial uncertainty of semantics in nighttime images. Our central contributions are: 1) a curriculum framework to gradually adapt semantic segmentation models from day to night through progressively darker times of day, exploiting cross-time-of-day correspondences between daytime images from a reference map and dark images to guide the label inference in the dark domains; 2) a novel uncertainty-aware annotation and evaluation framework and metric for semantic segmentation, including image regions beyond human recognition capability in the evaluation in a principled fashion; 3) the Dark Zurich dataset, comprising 2416 unlabeled nighttime and 2920 unlabeled twilight images with correspondences to their daytime counterparts plus a set of 201 nighttime images with fine pixel-level annotations created with our protocol, which serves as a first benchmark for our novel evaluation. Experiments show that our map-guided curriculum adaptation significantly outperforms state-of-the-art methods on nighttime sets both for standard metrics and our uncertainty-aware metric. Furthermore, our uncertainty-aware evaluation reveals that selective invalidation of predictions can improve results on data with ambiguous content such as our benchmark and profit safety-oriented applications involving invalid inputs.Comment: IEEE T-PAMI 202

    Study on the towing of drilling platform in port waters based on VTS Aid-To-Navigation Service

    Get PDF

    An enactive approach to perceptual augmentation in mobility

    Get PDF
    Event predictions are an important constituent of situation awareness, which is a key objective for many applications in human-machine interaction, in particular in driver assistance. This work focuses on facilitating event predictions in dynamic environments. Its primary contributions are 1) the theoretical development of an approach for enabling people to expand their sampling and understanding of spatiotemporal information, 2) the introduction of exemplary systems that are guided by this approach, 3) the empirical investigation of effects functional prototypes of these systems have on human behavior and safety in a range of simulated road traffic scenarios, and 4) a connection of the investigated approach to work on cooperative human-machine systems. More specific contents of this work are summarized as follows: The first part introduces several challenges for the formation of situation awareness as a requirement for safe traffic participation. It reviews existing work on these challenges in the domain of driver assistance, resulting in an identification of the need to better inform drivers about dynamically changing aspects of a scene, including event probabilities, spatial and temporal distances, as well as a suggestion to expand the scope of assistance systems to start informing drivers about relevant scene elements at an early stage. Novel forms of assistance can be guided by different fundamental approaches that target either replacement, distribution, or augmentation of driver competencies. A subsequent differentiation of these approaches concludes that an augmentation-guided paradigm, characterized by an integration of machine capabilities into human feedback loops, can be advantageous for tasks that rely on active user engagement, the preservation of awareness and competence, and the minimization of complexity in human- machine interaction. Consequently, findings and theories about human sensorimotor processes are connected to develop an enactive approach that is consistent with an augmentation perspective on human-machine interaction. The approach is characterized by enabling drivers to exercise new sensorimotor processes through which safety-relevant spatiotemporal information may be sampled. In the second part of this work, a concept and functional prototype for augmenting the perception of traffic dynamics is introduced as a first example for applying principles of this enactive approach. As a loose expression of functional biomimicry, the prototype utilizes a tactile inter- face that communicates temporal distances to potential hazards continuously through stimulus intensity. In a driving simulator study, participants quickly gained an intuitive understanding of the assistance without instructions and demonstrated higher driving safety in safety-critical highway scenarios. But this study also raised new questions such as whether benefits are due to a continuous time-intensity encoding and whether utility generalizes to intersection scenarios or highway driving with low criticality events. Effects of an expanded assistance prototype with lane-independent risk assessment and an option for binary signaling were thus investigated in a separate driving simulator study. Subjective responses confirmed quick signal understanding and a perception of spatial and temporal stimulus characteristics. Surprisingly, even for a binary assistance variant with a constant intensity level, participants reported perceiving a danger-dependent variation in stimulus intensity. They further felt supported by the system in the driving task, especially in difficult situations. But in contrast to the first study, this support was not expressed by changes in driving safety, suggesting that perceptual demands of the low criticality scenarios could be satisfied by existing driver capabilities. But what happens if such basic capabilities are impaired, e.g., due to poor visibility conditions or other situations that introduce perceptual uncertainty? In a third driving simulator study, the driver assistance was employed specifically in such ambiguous situations and produced substantial safety advantages over unassisted driving. Additionally, an assistance variant that adds an encoding of spatial uncertainty was investigated in these scenarios. Participants had no difficulties to understand and utilize this added signal dimension to improve safety. Despite being inherently less informative than spatially precise signals, users rated uncertainty-encoding signals as equally useful and satisfying. This appreciation for transparency of variable assistance reliability is a promising indicator for the feasibility of an adaptive trust calibration in human-machine interaction and marks one step towards a closer integration of driver and vehicle capabilities. A complementary step on the driver side would be to increase transparency about the driver’s mental states and thus allow for mutual adaptation. The final part of this work discusses how such prerequisites of cooperation may be achieved by monitoring mental state correlates observable in human behavior, especially in eye movements. Furthermore, the outlook for an addition of cooperative features also raises new questions about the bounds of identity as well as practical consequences of human-machine systems in which co-adapting agents may exercise sensorimotor processes through one another.Die Vorhersage von Ereignissen ist ein Bestandteil des Situationsbewusstseins, dessen Unterstützung ein wesentliches Ziel diverser Anwendungen im Bereich Mensch-Maschine Interaktion ist, insbesondere in der Fahrerassistenz. Diese Arbeit zeigt Möglichkeiten auf, Menschen bei Vorhersagen in dynamischen Situationen im Straßenverkehr zu unterstützen. Zentrale Beiträge der Arbeit sind 1) eine theoretische Auseinandersetzung mit der Aufgabe, die menschliche Wahrnehmung und das Verständnis von raum-zeitlichen Informationen im Straßenverkehr zu erweitern, 2) die Einführung beispielhafter Systeme, die aus dieser Betrachtung hervorgehen, 3) die empirische Untersuchung der Auswirkungen dieser Systeme auf das Nutzerverhalten und die Fahrsicherheit in simulierten Verkehrssituationen und 4) die Verknüpfung der untersuchten Ansätze mit Arbeiten an kooperativen Mensch-Maschine Systemen. Die Arbeit ist in drei Teile gegliedert: Der erste Teil stellt einige Herausforderungen bei der Bildung von Situationsbewusstsein vor, welches für die sichere Teilnahme am Straßenverkehr notwendig ist. Aus einem Vergleich dieses Überblicks mit früheren Arbeiten zeigt sich, dass eine Notwendigkeit besteht, Fahrer besser über dynamische Aspekte von Fahrsituationen zu informieren. Dies umfasst unter anderem Ereigniswahrscheinlichkeiten, räumliche und zeitliche Distanzen, sowie eine frühere Signalisierung relevanter Elemente in der Umgebung. Neue Formen der Assistenz können sich an verschiedenen grundlegenden Ansätzen der Mensch-Maschine Interaktion orientieren, die entweder auf einen Ersatz, eine Verteilung oder eine Erweiterung von Fahrerkompetenzen abzielen. Die Differenzierung dieser Ansätze legt den Schluss nahe, dass ein von Kompetenzerweiterung geleiteter Ansatz für die Bewältigung jener Aufgaben von Vorteil ist, bei denen aktiver Nutzereinsatz, die Erhaltung bestehender Kompetenzen und Situationsbewusstsein gefordert sind. Im Anschluss werden Erkenntnisse und Theorien über menschliche sensomotorische Prozesse verknüpft, um einen enaktiven Ansatz der Mensch-Maschine Interaktion zu entwickeln, der einer erweiterungsgeleiteten Perspektive Rechnung trägt. Dieser Ansatz soll es Fahrern ermöglichen, sicherheitsrelevante raum-zeitliche Informationen über neue sensomotorische Prozesse zu erfassen. Im zweiten Teil der Arbeit wird ein Konzept und funktioneller Prototyp zur Erweiterung der Wahrnehmung von Verkehrsdynamik als ein erstes Beispiel zur Anwendung der Prinzipien dieses enaktiven Ansatzes vorgestellt. Dieser Prototyp nutzt vibrotaktile Aktuatoren zur Kommunikation von Richtungen und zeitlichen Distanzen zu möglichen Gefahrenquellen über die Aktuatorposition und -intensität. Teilnehmer einer Fahrsimulationsstudie waren in der Lage, in kurzer Zeit ein intuitives Verständnis dieser Assistenz zu entwickeln, ohne vorher über die Funktionalität unterrichtet worden zu sein. Sie zeigten zudem ein erhöhtes Maß an Fahrsicherheit in kritischen Verkehrssituationen. Doch diese Studie wirft auch neue Fragen auf, beispielsweise, ob der Sicherheitsgewinn auf kontinuierliche Distanzkodierung zurückzuführen ist und ob ein Nutzen auch in weiteren Szenarien vorliegen würde, etwa bei Kreuzungen und weniger kritischem longitudinalen Verkehr. Um diesen Fragen nachzugehen, wurden Effekte eines erweiterten Prototypen mit spurunabhängiger Kollisionsprädiktion, sowie einer Option zur binären Kommunikation möglicher Kollisionsrichtungen in einer weiteren Fahrsimulatorstudie untersucht. Auch in dieser Studie bestätigen die subjektiven Bewertungen ein schnelles Verständnis der Signale und eine Wahrnehmung räumlicher und zeitlicher Signalkomponenten. Überraschenderweise berichteten Teilnehmer größtenteils auch nach der Nutzung einer binären Assistenzvariante, dass sie eine gefahrabhängige Variation in der Intensität von taktilen Stimuli wahrgenommen hätten. Die Teilnehmer fühlten sich mit beiden Varianten in der Fahraufgabe unterstützt, besonders in Situationen, die von ihnen als kritisch eingeschätzt wurden. Im Gegensatz zur ersten Studie hat sich diese gefühlte Unterstützung nur geringfügig in einer messbaren Sicherheitsveränderung widergespiegelt. Dieses Ergebnis deutet darauf hin, dass die Wahrnehmungsanforderungen der Szenarien mit geringer Kritikalität mit den vorhandenen Fahrerkapazitäten erfüllt werden konnten. Doch was passiert, wenn diese Fähigkeiten eingeschränkt werden, beispielsweise durch schlechte Sichtbedingungen oder Situationen mit erhöhter Ambiguität? In einer dritten Fahrsimulatorstudie wurde das Assistenzsystem in speziell solchen Situationen eingesetzt, was zu substantiellen Sicherheitsvorteilen gegenüber unassistiertem Fahren geführt hat. Zusätzlich zu der vorher eingeführten Form wurde eine neue Variante des Prototyps untersucht, welche räumliche Unsicherheiten der Fahrzeugwahrnehmung in taktilen Signalen kodiert. Studienteilnehmer hatten keine Schwierigkeiten, diese zusätzliche Signaldimension zu verstehen und die Information zur Verbesserung der Fahrsicherheit zu nutzen. Obwohl sie inherent weniger informativ sind als räumlich präzise Signale, bewerteten die Teilnehmer die Signale, die die Unsicherheit übermitteln, als ebenso nützlich und zufriedenstellend. Solch eine Wertschätzung für die Transparenz variabler Informationsreliabilität ist ein vielversprechendes Indiz für die Möglichkeit einer adaptiven Vertrauenskalibrierung in der Mensch-Maschine Interaktion. Dies ist ein Schritt hin zur einer engeren Integration der Fähigkeiten von Fahrer und Fahrzeug. Ein komplementärer Schritt wäre eine Erweiterung der Transparenz mentaler Zustände des Fahrers, wodurch eine wechselseitige Anpassung von Mensch und Maschine möglich wäre. Der letzte Teil dieser Arbeit diskutiert, wie diese Transparenz und weitere Voraussetzungen von Mensch-Maschine Kooperation erfüllt werden könnten, indem etwa Korrelate mentaler Zustände, insbesondere über das Blickverhalten, überwacht werden. Des Weiteren ergeben sich mit Blick auf zusätzliche kooperative Fähigkeiten neue Fragen über die Definition von Identität, sowie über die praktischen Konsequenzen von Mensch-Maschine Systemen, in denen ko-adaptive Agenten sensomotorische Prozesse vermittels einander ausüben können

    A study on navigation safety on Putou Branch Channel extension project for Meizhou Bay

    Get PDF

    A Study on Recent Developments and Issues with Obstacle Detection Systems for Automated Vehicles

    Get PDF
    This paper reviews current developments and discusses some critical issues with obstacle detection systems for automated vehicles. The concept of autonomous driving is the driver towards future mobility. Obstacle detection systems play a crucial role in implementing and deploying autonomous driving on our roads and city streets. The current review looks at technology and existing systems for obstacle detection. Specifically, we look at the performance of LIDAR, RADAR, vision cameras, ultrasonic sensors, and IR and review their capabilities and behaviour in a number of different situations: during daytime, at night, in extreme weather conditions, in urban areas, in the presence of smooths surfaces, in situations where emergency service vehicles need to be detected and recognised, and in situations where potholes need to be observed and measured. It is suggested that combining different technologies for obstacle detection gives a more accurate representation of the driving environment. In particular, when looking at technological solutions for obstacle detection in extreme weather conditions (rain, snow, fog), and in some specific situations in urban areas (shadows, reflections, potholes, insufficient illumination), although already quite advanced, the current developments appear to be not sophisticated enough to guarantee 100% precision and accuracy, hence further valiant effort is needed

    Next-Generation Smart Cars: Towards a More Intelligent Interactive Infotainment System

    Get PDF
    abstract: Today, in a world of automation, the impact of Artificial Intelligence can be seen in every aspect of our lives. Starting from smart homes to self-driving cars everything is run using intelligent, adaptive technologies. In this thesis, an attempt is made to analyze the correlation between driving quality and its impact on the use of car infotainment system and vice versa and hence the driver distraction. Various internal and external driving factors have been identified to understand the dependency and seriousness of driver distraction caused due to the car infotainment system. We have seen a number UI/UX changes, speech recognition advancements in cars to reduce distraction. But reducing the number of casualties on road is still a persisting problem in hand as the cognitive load on the driver is considered to be one of the primary reasons for distractions leading to casualties. In this research, a pathway has been provided to move towards building an artificially intelligent, adaptive and interactive infotainment which is trained to behave differently by analyzing the driving quality without the intervention of the driver. The aim is to not only shift focus of the driver from screen to street view, but to also change the inherent behavior of the infotainment system based on the driving statistics at that point in time without the need for driver intervention.Dissertation/ThesisMasters Thesis Software Engineering 201
    corecore