19,289 research outputs found

    Intelligent conditional collaborative private data sharing

    Get PDF
    With the advent of distributed systems, secure and privacy-preserving data sharing between different entities (individuals or organizations) becomes a challenging issue. There are several real-world scenarios in which different entities are willing to share their private data only under certain circumstances, such as sharing the system logs when there is indications of cyber attack in order to provide cyber threat intelligence. Therefore, over the past few years, several researchers proposed solutions for collaborative data sharing, mostly based on existing cryptographic algorithms. However, the existing approaches are not appropriate for conditional data sharing, i.e., sharing the data if and only if a pre-defined condition is satisfied due to the occurrence of an event. Moreover, in case the existing solutions are used in conditional data sharing scenarios, the shared secret will be revealed to all parties and re-keying process is necessary. In this work, in order to address the aforementioned challenges, we propose, a “conditional collaborative private data sharing” protocol based on Identity-Based Encryption and Threshold Secret Sharing schemes. In our proposed approach, the condition based on which the encrypted data will be revealed to the collaborating parties (or a central entity) could be of two types: (i) threshold, or (ii) pre-defined policy. Supported by thorough analytical and experimental analysis, we show the effectiveness and performance of our proposal

    User-Oriented Authorization in Collaborative Environments

    Get PDF
    Access rights for collaborative systems tend to be rather complex, leading to difficulties in the presentation and manipulation of access policies at the user interface level. We confront a theoretical access rights model with the results of a field study which investigates how users specify access policies. Our findings suggest that our theoretical model addresses most of the issues raised by the field study, when the required functionality can be presented in an appropriate user interface

    Synthetic Observational Health Data with GANs: from slow adoption to a boom in medical research and ultimately digital twins?

    Full text link
    After being collected for patient care, Observational Health Data (OHD) can further benefit patient well-being by sustaining the development of health informatics and medical research. Vast potential is unexploited because of the fiercely private nature of patient-related data and regulations to protect it. Generative Adversarial Networks (GANs) have recently emerged as a groundbreaking way to learn generative models that produce realistic synthetic data. They have revolutionized practices in multiple domains such as self-driving cars, fraud detection, digital twin simulations in industrial sectors, and medical imaging. The digital twin concept could readily apply to modelling and quantifying disease progression. In addition, GANs posses many capabilities relevant to common problems in healthcare: lack of data, class imbalance, rare diseases, and preserving privacy. Unlocking open access to privacy-preserving OHD could be transformative for scientific research. In the midst of COVID-19, the healthcare system is facing unprecedented challenges, many of which of are data related for the reasons stated above. Considering these facts, publications concerning GAN applied to OHD seemed to be severely lacking. To uncover the reasons for this slow adoption, we broadly reviewed the published literature on the subject. Our findings show that the properties of OHD were initially challenging for the existing GAN algorithms (unlike medical imaging, for which state-of-the-art model were directly transferable) and the evaluation synthetic data lacked clear metrics. We find more publications on the subject than expected, starting slowly in 2017, and since then at an increasing rate. The difficulties of OHD remain, and we discuss issues relating to evaluation, consistency, benchmarking, data modelling, and reproducibility.Comment: 31 pages (10 in previous version), not including references and glossary, 51 in total. Inclusion of a large number of recent publications and expansion of the discussion accordingl
    corecore