152 research outputs found

    A new fault diagnosis method using deep belief network and compressive sensing

    Get PDF
    Compressive sensing provides a new idea for machinery monitoring, which greatly reduces the burden on data transmission. After that, the compressed signal will be used for fault diagnosis by feature extraction and fault classification. However, traditional fault diagnosis heavily depends on the prior knowledge and requires a signal reconstruction which will cost great time consumption. For this problem, a deep belief network (DBN) is used here for fault detection directly on compressed signal. This is the first time DBN is combined with the compressive sensing. The PCA analysis shows that DBN has successfully separated different features. The DBN method which is tested on compressed gearbox signal, achieves 92.5Β % accuracy for 25Β % compressed signal. We compare the DBN on both compressed and reconstructed signal, and find that the DBN using compressed signal not only achieves better accuracies, but also costs less time when compression ratio is less than 0.35. Moreover, the results have been compared with other classification methods

    Deep Learning Aided Data-Driven Fault Diagnosis of Rotatory Machine: A Comprehensive Review

    Get PDF
    This paper presents a comprehensive review of the developments made in rotating bearing fault diagnosis, a crucial component of a rotatory machine, during the past decade. A data-driven fault diagnosis framework consists of data acquisition, feature extraction/feature learning, and decision making based on shallow/deep learning algorithms. In this review paper, various signal processing techniques, classical machine learning approaches, and deep learning algorithms used for bearing fault diagnosis have been discussed. Moreover, highlights of the available public datasets that have been widely used in bearing fault diagnosis experiments, such as Case Western Reserve University (CWRU), Paderborn University Bearing, PRONOSTIA, and Intelligent Maintenance Systems (IMS), are discussed in this paper. A comparison of machine learning techniques, such as support vector machines, k-nearest neighbors, artificial neural networks, etc., deep learning algorithms such as a deep convolutional network (CNN), auto-encoder-based deep neural network (AE-DNN), deep belief network (DBN), deep recurrent neural network (RNN), and other deep learning methods that have been utilized for the diagnosis of rotary machines bearing fault, is presented

    Machine learning and deep learning based methods toward Industry 4.0 predictive maintenance in induction motors: Ξ‘ state of the art survey

    Get PDF
    Purpose: Developments in Industry 4.0 technologies and Artificial Intelligence (AI) have enabled data-driven manufacturing. Predictive maintenance (PdM) has therefore become the prominent approach for fault detection and diagnosis (FD/D) of induction motors (IMs). The maintenance and early FD/D of IMs are critical processes, considering that they constitute the main power source in the industrial production environment. Machine learning (ML) methods have enhanced the performance and reliability of PdM. Various deep learning (DL) based FD/D methods have emerged in recent years, providing automatic feature engineering and learning and thereby alleviating drawbacks of traditional ML based methods. This paper presents a comprehensive survey of ML and DL based FD/D methods of IMs that have emerged since 2015. An overview of the main DL architectures used for this purpose is also presented. A discussion of the recent trends is given as well as future directions for research. Design/methodology/approach: A comprehensive survey has been carried out through all available publication databases using related keywords. Classification of the reviewed works has been done according to the main ML and DL techniques and algorithms Findings: DL based PdM methods have been mainly introduced and implemented for IM fault diagnosis in recent years. Novel DL FD/D methods are based on single DL techniques as well as hybrid techniques. DL methods have also been used for signal preprocessing and moreover, have been combined with traditional ML algorithms to enhance the FD/D performance in feature engineering. Publicly available datasets have been mostly used to test the performance of the developed methods, however industrial datasets should become available as well. Multi-agent system (MAS) based PdM employing ML classifiers has been explored. Several methods have investigated multiple IM faults, however, the presence of multiple faults occurring simultaneously has rarely been investigated. Originality/value: The paper presents a comprehensive review of the recent advances in PdM of IMs based on ML and DL methods that have emerged since 2015Peer Reviewe

    Data-Driven Machine Learning for Fault Detection and Diagnosis in Nuclear Power Plants: A Review

    Get PDF
    Data-driven machine learning (DDML) methods for the fault diagnosis and detection (FDD) in the nuclear power plant (NPP) are of emerging interest in the recent years. However, there still lacks research on comprehensive reviewing the state-of-the-art progress on the DDML for the FDD in the NPP. In this review, the classifications, principles, and characteristics of the DDML are firstly introduced, which include the supervised learning type, unsupervised learning type, and so on. Then, the latest applications of the DDML for the FDD, which consist of the reactor system, reactor component, and reactor condition monitoring are illustrated, which can better predict the NPP behaviors. Lastly, the future development of the DDML for the FDD in the NPP is concluded

    Failure Prognosis of Wind Turbine Components

    Get PDF
    Wind energy is playing an increasingly significant role in the World\u27s energy supply mix. In North America, many utility-scale wind turbines are approaching, or are beyond the half-way point of their originally anticipated lifespan. Accurate estimation of the times to failure of major turbine components can provide wind farm owners insight into how to optimize the life and value of their farm assets. This dissertation deals with fault detection and failure prognosis of critical wind turbine sub-assemblies, including generators, blades, and bearings based on data-driven approaches. The main aim of the data-driven methods is to utilize measurement data from the system and forecast the Remaining Useful Life (RUL) of faulty components accurately and efficiently. The main contributions of this dissertation are in the application of ALTA lifetime analysis to help illustrate a possible relationship between varying loads and generators reliability, a wavelet-based Probability Density Function (PDF) to effectively detecting incipient wind turbine blade failure, an adaptive Bayesian algorithm for modeling the uncertainty inherent in the bearings RUL prediction horizon, and a Hidden Markov Model (HMM) for characterizing the bearing damage progression based on varying operating states to mimic a real condition in which wind turbines operate and to recognize that the damage progression is a function of the stress applied to each component using data from historical failures across three different Canadian wind farms

    λΉ„ν‘œμ§€ κ³ μž₯ 데이터와 μœ μ€‘κ°€μŠ€λΆ„μ„λ°μ΄ν„°λ₯Ό μ΄μš©ν•œ λ”₯λŸ¬λ‹κΈ°λ°˜ μ£Όλ³€μ••κΈ° κ³ μž₯진단 연ꡬ

    Get PDF
    ν•™μœ„λ…Όλ¬Έ(박사) -- μ„œμšΈλŒ€ν•™κ΅λŒ€ν•™μ› : κ³΅κ³ΌλŒ€ν•™ 기계항곡곡학뢀, 2021.8. μ†Œμž¬μ›….μ˜€λŠ˜λ‚  μ‚°μ—…μ˜ κΈ‰μ†ν•œ λ°œμ „κ³Ό κ³ λ„ν™”λ‘œ 인해 μ•ˆμ „ν•˜κ³  μ‹ λ’°ν•  수 μžˆλŠ” μ „λ ₯ 계톡에 λŒ€ν•œ μˆ˜μš”λŠ” λ”μš± μ€‘μš”ν•΄μ§€κ³  μžˆλ‹€. λ”°λΌμ„œ μ‹€μ œ μ‚°μ—… ν˜„μž₯μ—μ„œλŠ” μ£Όλ³€μ••κΈ°μ˜ μ•ˆμ „ν•œ μž‘λ™μ„ μœ„ν•΄ μƒνƒœλ₯Ό μ •ν™•ν•˜κ²Œ 진단할 수 μžˆλŠ” prognostics and health management (PHM)와 같은 기술이 ν•„μš”ν•˜λ‹€. μ£Όλ³€μ••κΈ° 진단을 μœ„ν•΄ 개발된 λ‹€μ–‘ν•œ 방법 쀑 인곡지λŠ₯(AI) 기반 접근법은 μ‚°μ—…κ³Ό ν•™κ³„μ—μ„œ λ§Žμ€ 관심을 λ°›κ³  μžˆλ‹€. λ”μš±μ΄ λ°©λŒ€ν•œ 데이터와 ν•¨κ»˜ 높은 μ„±λŠ₯을 λ‹¬μ„±ν•˜λŠ” λ”₯ λŸ¬λ‹ κΈ°μˆ μ€ μ£Όλ³€μ••κΈ° κ³ μž₯ μ§„λ‹¨μ˜ ν•™μžλ“€μ—κ²Œ 높은 관심을 κ°–κ²Œ 해쀬닀. κ·Έ μ΄μœ λŠ” λ”₯ λŸ¬λ‹ 기술이 μ‹œμŠ€ν…œμ˜ 도메인 지식을 깊이 이해할 ν•„μš” 없이 λŒ€λŸ‰μ˜ λ°μ΄ν„°λ§Œ 주어진닀면 λ³΅μž‘ν•œ μ‹œμŠ€ν…œμ΄λΌλ„ μ‚¬μš©μžμ˜ λͺ©μ μ— 맞게 κ·Έ 해닡을 찾을 수 있기 λ•Œλ¬Έμ— λ”₯ λŸ¬λ‹μ— λŒ€ν•œ 관심은 μ£Όλ³€μ••κΈ° κ³ μž₯ 진단 λΆ„μ•Όμ—μ„œ 특히 λ‘λ“œλŸ¬μ‘Œλ‹€. κ·ΈλŸ¬λ‚˜, μ΄λŸ¬ν•œ λ›°μ–΄λ‚œ 진단 μ„±λŠ₯은 아직 μ‹€μ œ μ£Όλ³€μ••κΈ° μ‚°μ—…μ—μ„œλŠ” λ§Žμ€ 관심을 μ–»κ³  μžˆμ§€λŠ” λͺ»ν•œ κ²ƒμœΌλ‘œ μ•Œλ €μ‘Œλ‹€. κ·Έ μ΄μœ λŠ” μ‚°μ—…ν˜„μž₯의 λΉ„ν‘œμ§€λ°μ΄ν„°μ™€ μ†ŒλŸ‰μ˜ κ³ μž₯데이터 λ•Œλ¬Έμ— μš°μˆ˜ν•œ λ”₯λŸ¬λ‹κΈ°λ°˜μ˜ κ³ μž₯ 진단 λͺ¨λΈλ“€μ„ κ°œλ°œν•˜κΈ° μ–΄λ ΅λ‹€. λ”°λΌμ„œ λ³Έ ν•™μœ„λ…Όλ¬Έμ—μ„œλŠ” μ£Όλ³€μ••κΈ° μ‚°μ—…μ—μ„œ ν˜„μž¬ λŒ€λ‘λ˜κ³  μžˆλŠ” 세가지 이슈λ₯Ό μ—°κ΅¬ν•˜μ˜€λ‹€. 1) 건전성 평면 μ‹œκ°ν™” 이슈, 2) 데이터 λΆ€μ‘± 이슈, 3) 심각도 이슈 듀을 κ·Ήλ³΅ν•˜κΈ° μœ„ν•œ λ”₯ λŸ¬λ‹ 기반 κ³ μž₯ 진단 연ꡬλ₯Ό μ§„ν–‰ν•˜μ˜€λ‹€. μ†Œκ°œλœ 세가지 μ΄μŠˆλ“€μ„ κ°œμ„ ν•˜κΈ° μœ„ν•΄ λ³Έ ν•™μœ„λ…Όλ¬Έμ€ μ„Έ 가지 연ꡬλ₯Ό μ œμ•ˆν•˜μ˜€λ‹€. 첫 번째 μ—°κ΅¬λŠ” 보쑰 감지 μž‘μ—…μ΄ μžˆλŠ” 쀀지도 μžλ™ 인코더λ₯Ό 톡해 건전성 평면을 μ œμ•ˆν•˜μ˜€λ‹€. μ œμ•ˆλœ 방법은 λ³€μ••κΈ° μ—΄ν•˜ νŠΉμ„±μ„ μ‹œκ°ν™” ν•  수 μžˆλ‹€. λ˜ν•œ, 쀀지도 접근법을 ν™œμš©ν•˜κΈ° λ•Œλ¬Έμ— λ°©λŒ€ν•œ λΉ„ν‘œμ§€λ°μ΄ν„° 그리고 μ†Œμˆ˜μ˜ ν‘œμ§€λ°μ΄ν„°λ§ŒμœΌλ‘œ κ΅¬ν˜„λ  수 μžˆλ‹€. μ œμ•ˆλ°©λ²•μ€ μ£Όλ³€μ••κΈ° 건전성을 건전성 평면과 ν•¨κ»˜ μ‹œκ°ν™”ν•˜κ³ , 맀우 적은 μ†Œμˆ˜μ˜ λ ˆμ΄λΈ” λ°μ΄ν„°λ§ŒμœΌλ‘œ μ£Όλ³€μ••κΈ° κ³ μž₯을 μ§„λ‹¨ν•œλ‹€. 두 번째 μ—°κ΅¬λŠ” κ·œμΉ™ 기반 Duval 방법을 AI 기반 deep neural network (DNN)κ³Ό μœ΅ν•©(bridge)ν•˜λŠ” μƒˆλ‘œμš΄ ν”„λ ˆμž„μ›Œν¬λ₯Ό μ œμ•ˆν•˜μ˜€λ‹€. 이 방법은 룰기반의 Duval을 μ‚¬μš©ν•˜μ—¬ λΉ„ν‘œμ§€λ°μ΄ν„°λ₯Ό μˆ˜λ„ λ ˆμ΄λΈ”λ§ν•œλ‹€ (pseudo-labeling). λ˜ν•œ, AI 기반 DNN은 μ •κ·œν™” 기술과 맀개 λ³€μˆ˜ 전이 ν•™μŠ΅μ„ μ μš©ν•˜μ—¬ λ…Έμ΄μ¦ˆκ°€ μžˆλŠ” pseudo-label 데이터λ₯Ό ν•™μŠ΅ν•˜λŠ”λ° μ‚¬μš©λœλ‹€. 개발된 κΈ°μˆ μ€ λ°©λŒ€ν•œμ–‘μ˜ λΉ„ν‘œμ§€λ°μ΄ν„°λ₯Ό 룰기반으둜 일차적으둜 μ§„λ‹¨ν•œ 결과와 μ†Œμˆ˜μ˜ μ‹€μ œ κ³ μž₯데이터와 ν•¨κ»˜ ν•™μŠ΅λ°μ΄ν„°λ‘œ ν›ˆλ ¨ν•˜μ˜€μ„ λ•Œ 기쑴의 진단 방법보닀 획기적인 ν–₯상을 κ°€λŠ₯μΌ€ ν•œλ‹€. 끝으둜, μ„Έ 번째 μ—°κ΅¬λŠ” κ³ μž₯ νƒ€μž…μ„ 진단할 뿐만 μ•„λ‹ˆλΌ 심각도 λ˜ν•œ μ§„λ‹¨ν•˜λŠ” κΈ°μˆ μ„ μ œμ•ˆν•˜μ˜€λ‹€. μ΄λ•Œ 두 μƒνƒœμ˜ λ ˆμ΄λΈ”λ§λœ κ³ μž₯ νƒ€μž…κ³Ό 심각도 μ‚¬μ΄μ—λŠ” λΆˆκ· μΌν•œ 데이터 λΆ„ν¬λ‘œ 이루어져 μžˆλ‹€. κ·Έ μ΄μœ λŠ” μ‹¬κ°λ„μ˜ 경우 λ ˆμ΄λΈ”λ§μ΄ 항상 λ˜μ–΄ μžˆμ§€λ§Œ κ³ μž₯ νƒ€μž…μ˜ κ²½μš°λŠ” μ‹€μ œ μ£Όλ³€μ••κΈ°λ‘œλΆ€ν„° κ³ μž₯ νƒ€μž… 데이터λ₯Ό μ–»κΈ°κ°€ 맀우 μ–΄λ ΅κΈ° λ•Œλ¬Έμ΄λ‹€. λ”°λΌμ„œ, λ³Έ μ—°κ΅¬μ—μ„œ μ„Έλ²ˆμ§Έλ‘œ κ°œλ°œν•œ κΈ°μˆ μ€ μ˜€λŠ˜λ‚  데이터 생성에 맀우 μš°μˆ˜ν•œ μ„±λŠ₯을 λ‹¬μ„±ν•˜κ³  μžˆλŠ” generative adversarial network (GAN)λ₯Ό 톡해 λΆˆκ· ν˜•ν•œ 두 μƒνƒœλ₯Ό 균일화 μž‘μ—…μ„ μˆ˜ν–‰ν•˜λŠ” λ™μ‹œμ— κ³ μž₯ λͺ¨λ“œμ™€ 심각도λ₯Ό μ§„λ‹¨ν•˜λŠ” λͺ¨λΈμ„ κ°œλ°œν•˜μ˜€λ‹€.Due to the rapid development and advancement of today’s industry, the demand for safe and reliable power distribution and transmission lines is becoming more critical; thus, prognostics and health management (hereafter, PHM) is becoming more important in the power transformer industry. Among various methods developed for power transformer diagnosis, the artificial intelligence (AI) based approach has received considerable interest from academics. Specifically, deep learning technology, which offers excellent performance when used with vast amounts of data, is also rapidly gaining the spotlight in the academic field of transformer fault diagnosis. The interest in deep learning has been especially noticed in the field of fault diagnosis, because deep learning algorithms can be applied to complex systems that have large amounts of data, without the need for a deep understanding of the domain knowledge of the system. However, the outstanding performance of these diagnosis methods has not yet gained much attention in the power transformer PHM industry. The reason is that a large amount of unlabeled and a small amount of fault data always restrict their deep-learning-based diagnosis methods in the power transformer PHM industry. Therefore, in this dissertation research, deep-learning-based fault diagnosis methods are developed to overcome three issues that currently prevent this type of diagnosis in industrial power transformers: 1) the visualization of health feature space issue, 2) the insufficient data issue, and 3) the severity issue. To cope with these challenges, this thesis is composed of three research thrusts. The first research thrust develops a health feature space via a semi-supervised autoencoder with an auxiliary detection task. The proposed method can visualize a monotonic health trendability of the transformer’s degradation properties. Further, thanks to the use of a semi-supervised approach, the method is applicable to situations with a large amount of unlabeled and a small amount labeled data (a situation common in industrial datasets). Next, the second research thrust proposes a new framework, that bridges the rule-based Duval method with an AI-based deep neural network (BDD). In this method, the rule-based Duval method is utilized to pseudo-label a large amount of unlabeled data. Furthermore, the AI-based DNN is used to apply regularization techniques and parameter transfer learning to learn the noisy pseudo-labelled data. Finally, the third thrust not only identifies fault types but also indicates a severity level. However, the balance between labeled fault types and the severity level is imbalanced in real-world data. Therefore, in the proposed method, diagnosis of fault types – with severity levels – under imbalanced conditions is addressed by utilizing a generative adversarial network with an auxiliary classifier. The validity of the proposed methods is demonstrated by studying massive unlabeled dissolved gas analysis (DGA) data, provided by the Korea Electric Power Company (KEPCO), and sparse labeled data, provided by the IEC TC 10 database. Each developed method could be used in industrial fields that use power transformers to monitor the health feature space, consider severity level, and diagnose transformer faults under extremely insufficient labeled fault data.Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Research Scope and Overview 4 1.3 Dissertation Layout 7 Chapter 2 Literature Review 9 2.1 A Brief Overview of Rule-Based Fault Diagnosis 9 2.2 A Brief Overview of Conventional AI-Based Fault Diagnosis 11 Chapter 3 Extracting Health Feature Space via Semi-Supervised Autoencoder with an Auxiliary Task (SAAT) 13 3.1 Backgrounds of Semi-supervised autoencoder (SSAE) 15 3.1.1 Autoencoder: Unsupervised Feature Extraction 15 3.1.2 Softmax Classifier: Supervised Classification 17 3.1.3 Semi-supervised Autoencoder 18 3.2 Input DGA Data Preprocessing 20 3.3 SAAT-Based Fault Diagnosis Method 21 3.3.1 Roles of the Auxiliary Detection Task 23 3.3.2 Architecture of the Proposed SAAT 27 3.3.3 Health Feature Space Visualization 29 3.3.4 Overall Procedure of the Proposed SAAT-based Fault Diagnosis 30 3.4 Performance Evaluation of SAAT 31 3.4.1 Data Description and Implementation 31 3.4.2 An Outline of Four Comparative Studies and Quantitative Evaluation Metrics 33 3.4.3 Experimental Results and Discussion 36 3.5 Summary and Discussion 49 Chapter 4 Learning from Even a Weak Teacher: Bridging Rule-based Duval Weak Supervision and a Deep Neural Network (BDD) for Diagnosing Transformer 51 4.1 Backgrounds of BDD 53 4.1.1 Rule-based method: Duval Method 53 4.1.2 Deep learning Based Method: Deep Neural Network 54 4.1.3 Parameter Transfer 55 4.2 BDD Based Fault Diagnosis 56 4.2.1 Problem Statement 56 4.2.2 Framework of the Proposed BDD 57 4.2.3 Overall Procedure of BDD-based Fault Diagnosis 63 4.3 Performance Evaluation of the BDD 64 4.3.1 Description of Data and the DNN Architecture 64 4.3.2 Experimental Results and Discussion 66 4.4 Summary and Discussion 76 Chapter 5 Generative Adversarial Network with Embedding Severity DGA Level 79 5.1 Backgrounds of Generative Adversarial Network 81 5.2 GANES based Fault Diagnosis 82 5.2.1 Training Strategy of GANES 82 5.2.2 Overall procedure of GANES 87 5.3 Performance Evaluation of GANES 91 5.3.1 Description of Data 91 5.3.2 Outlines of Experiments 91 5.3.3 Preliminary Experimental Results of Various GANs 95 5.3.4 Experiments for the Effectiveness of Embedding Severity DGA Level 99 5.4 Summary and Discussion 105 Chapter 6 Conclusion 106 6.1 Contributions and Significance 106 6.2 Suggestions for Future Research 108 References 110 κ΅­λ¬Έ 초둝 127λ°•
    • …
    corecore