199 research outputs found

    Talos: a prototype Intrusion Detection and Prevention system for profiling ransomware behaviour

    Get PDF
    Abstract: In this paper, we profile the behaviour and functionality of multiple recent variants of WannaCry and CrySiS/Dharma, through static and dynamic malware analysis. We then analyse and detail the commonly occurring behavioural features of ransomware. These features are utilised to develop a prototype Intrusion Detection and Prevention System (IDPS) named Talos, which comprises of several detection mechanisms/components. Benchmarking is later performed to test and validate the performance of the proposed Talos IDPS system and the results discussed in detail. It is established that the Talos system can successfully detect all ransomware variants tested, in an average of 1.7 seconds and instigate remedial action in a timely manner following first detection. The paper concludes with a summarisation of our main findings and discussion of potential future works which may be carried out to allow the effective detection and prevention of ransomware on systems and networks

    RansomBuster IoT: A Intrusion Detection and Dataset Creation Tool for Ransomware Attacks within IoT Networks

    Get PDF
    The proposed research follows the design-science guidelines(Hevner, 2004). This paper uses these design-science methods for developing the guidelines for the implementation of the proposed architecture, understanding previous research contributions, and evaluating of research. This paper proposes a network artifact for studying ransomware IoT intrusion detection techniques and offers a proposed network architecture to serve as a framework for creating a publicly available dataset for IoT research on ransomware

    Ransomware and Academic International Medicine

    Get PDF
    Healthcare is among the leading industries targeted by cyber-criminals. Ransomware exploits vulnerabilities to hijack target information technology (IT) infrastructures for monetary gain. Due to the nature and value of information, access to medical information enables cyber-criminals to commit identity theft, medical fraud, and extortion, and illegally obtain controlled substances. The utility and versatility of medical information, extensive centralized storage of medical information, relatively weak IT security systems, and the expanding use of healthcare IT infrastructure all contribute to an increase in cyber-attacks on healthcare entities. Research suggests that an individual’s medical information is 20–50 times more valuable to cyber-criminals than personal financial information. As such, cyber-attacks targeting medical information are increasing 22% per year. This chapter explores the history of ransomware attacks in healthcare, ransomware types, ransom payment, healthcare vulnerabilities, implications for international health security, and means of institutional protection

    Healthcare systems protection: All-in-one cybersecurity approach

    Get PDF
    Cyber risks are increasingly widespread as healthcare organizations play a defining role in society. Several studies have revealed an increase in cybersecurity threats in the industry, which should concern us all. When it comes to cybersecurity, the consequences can be felt throughout the organization, from the smallest processes to the overall ability of the organization to function. Typically, a cyberattack results in the disclosure of confidential information that undermines your competitive advantage and overall trust. Healthcare as a critical sector has, like many other sectors, a late bet on its transformation to cybersecurity across the board. This dissertation reinforces this need by presenting a value-added solution that helps strengthen the internal processes of healthcare units, enabling their primary mission of saving lives while ensuring the confidentiality and security of patient and institutional data. The solution is presented as a technological composite that translates into a methodology and innovative artifact for integration, monitoring, and security of critical medical infrastructures based on operational use cases. The approach that involves people, processes, and technology is based on a model that foresees the evaluation of potential assets for integration and monitoring, as well as leveraging the efficiency in responding to security incidents with the formal development of a process and mechanisms for alert and resolution of exposure and attack scenarios. On a technical level, the artifact relies on the integration of a medical image archiving system (PACS) into a SIEM to validate application logs that are linked to rules to map anomalous behaviors that trigger the incident management process on an IHS platform with custom-developed features. The choice for integration in the validation prototype of the PACS system is based not only on its importance in the orchestration of activities in the organization of a health institution, but also with the recent recommendations of various cybersecurity agencies and organizations for the importance of their protection in response to the latest trends in cyberattacks. In line with the results obtained, this approach will have full applicability in a real operational context, following the latest practices and technologies in the sector.Os riscos cibernéticos estão cada vez mais difundidos à medida que as organizações de cuidados de saúde desempenham um papel determinante na sociedade. Vários estudos revelaram um aumento das ameaças de cibersegurança no setor, o que nos deve preocupar a todos. Quando se trata de cibersegurança, as consequências podem ser sentidas em toda a organização, desde os mais pequenos processos até à sua capacidade global de funcionamento. Normalmente, um ciberataque resulta na divulgação de informações confidenciais que colocam em causa a sua vantagem competitiva e a confiança geral. O healthcare como setor crítico apresenta, como muitos outros setores, uma aposta tardia na sua transformação para a cibersegurança de forma generalizada. Esta dissertação reforça esta necessidade apresentando uma solução de valor acrescentado que ajuda a potenciar os processos internos das unidades de saúde possibilitando a sua missão principal de salvar vidas, aumentando a garantia de confidencialidade e segurança dos dados dos pacientes e instituições. A solução apresenta-se como um compósito tecnológico que se traduz numa metodologia e artefacto de inovação para integração, monitorização e segurança de infraestruturas médicas críticas baseado em use cases de operação. A abordagem que envolve pessoas, processos e tecnologia assenta num modelo que prevê a avaliação de potenciais ativos para integração e monitorização, como conta alavancar a eficiência na resposta a incidentes de segurança com o desenvolvimento formal de um processo e mecanismos para alerta e resolução de cenários de exposição e ataque. O artefacto, a nível tecnológico, conta com a integração do sistema de arquivo de imagem médica (PACS) num SIEM para validação de logs aplicacionais que estão associados a regras que mapeiam comportamentos anómalos que originam o despoletar do processo de gestão de incidentes numa plataforma IHS com funcionalidades desenvolvidas à medida. A escolha para integração no protótipo de validação do sistema PACS tem por base não só a sua importância na orquestração de atividades na orgânica duma instituição de saúde, mas também com as recentes recomendações de várias agências e organizações de cibersegurança para a importância da sua proteção em resposta às últimas tendências de ciberataques. Em linha com os resultados auscultados, esta abordagem terá total aplicabilidade em contexto real de operação, seguindo as mais recentes práticas e tecnologias no sector

    Cyber-physical Threat Detection Platform Designed for Healthcare Systems

    Get PDF
    Hospitals are responsible for delivering healthcare services to patients in need. These services are large and complex and get affected by multiple interacting actors, such as doctors, nurses, patients, citizens, medical suppliers, health insurance providers. Lately, hospitals around the world are one of the main targets when it comes to terrorist attacks, the cyber realm being the principal source. The healthcare sector is particularly vulnerable due to heavy involvement in patient personal and health information, time constraints, and complex day-to-day operations. In addition to cyber-threats, physical threats are increasingly growing and even healthcare facilities are not immune to them. Malicious intended people created cyber threatening attacks with the purpose to systematically collect evidence against the healthcare system, to advocate for the end of such attacks, and to endanger people\u27s lives or to use the stolen personal data for bad intended actions. Henceforth it is necessary to build a platform that will get alerts and incidents at a fast pace in real-time to prevent any casualties at low cost. SAFECARE project aims to offer protection to hospitals and increase the compliance for the European regulations and security regarding ethics and privacy for health services. This paper presents a solution that will enhance security in hospitals. The primary platform will be built based on a BTMS (Building Threat Monitoring System) where events, incidents, and alerts will be transmitted by sensors from hospital rooms in real-time. Several scenarios were thought to simulate different types of attacks against hospitals and according to the scenarios, various prototypes will be built for assuring the security of the personal and patients from various hospitals.</p

    A SYSTEMATIC LITERATURE REVIEW OF RANSOMWARE ATTACKS IN HEALTHCARE

    Get PDF
    This culminating experience project conducted a Systematic Literature Review of ransomware in the healthcare industry. Due to COVID-19, there has been an increase in ransomware attacks that took healthcare by surprise. Although ransomware is a common attack, the current healthcare infrastructure and security mechanisms could not suppress these attacks. This project identifies peer-viewed literature to answer these research questions: “What current ransomware attacks are used in healthcare systems? “What ransomware attacks are likely to appear in the future?” and “What solutions or methods have been used to prepare, prevent, and recover from these attacks?” The purpose of this research is to identify a possible increasing trend of seeing ransomware in the future and to see what technologies are used to combat these attacks. The findings focus on three solutions, artificial intelligence (AI), machine learning (ML), and blockchain as there can be many solutions that could have been included. Because the healthcare industry has many different types of systems involved, limitations of the research are solutions suggested being other studies may not work with other studies. For future studies, indicating a specific type of healthcare organization may be recommended and will have better results

    Ransomware detection using the dynamic analysis and machine learning: A survey and research directions

    Get PDF
    Ransomware is an ill-famed malware that has received recognition because of its lethal and irrevocable effects on its victims. The irreparable loss caused due to ransomware requires the timely detection of these attacks. Several studies including surveys and reviews are conducted on the evolution, taxonomy, trends, threats, and countermeasures of ransomware. Some of these studies were specifically dedicated to IoT and android platforms. However, there is not a single study in the available literature that addresses the significance of dynamic analysis for the ransomware detection studies for all the targeted platforms. This study also provides the information about the datasets collection from its sources, which were utilized in the ransomware detection studies of the diverse platforms. This study is also distinct in terms of providing a survey about the ransomware detection studies utilizing machine learning, deep learning, and blend of both techniques while capitalizing on the advantages of dynamic analysis for the ransomware detection. The presented work considers the ransomware detection studies conducted from 2019 to 2021. This study provides an ample list of future directions which will pave the way for future research

    Threat Assessment and Risk Analysis (TARA) for Interoperable Medical Devices in the Operating Room Inspired by the Automotive Industry

    Get PDF
    Prevailing trends in the automotive and medical device industry, such as life cycle overarching configurability, connectivity, and automation, require an adaption of development processes, especially regarding the security and safety thereof. The changing requirements imply that interfaces are more exposed to the outside world, making them more vulnerable to cyberattacks or data leaks. Consequently, not only do development processes need to be revised but also cybersecurity countermeasures and a focus on safety, as well as privacy, have become vital. While vehicles are especially exposed to cybersecurity and safety risks, the medical devices industry faces similar issues. In the automotive industry, proposals and draft regulations exist for security-related risk assessment processes. The medical device industry, which has less experience in these topics and is more heterogeneous, may benefit from drawing inspiration from these efforts. We examined and compared current standards, processes, and methods in both the automotive and medical industries. Based on the requirements regarding safety and security for risk analysis in the medical device industry, we propose the adoption of methods already established in the automotive industry. Furthermore, we present an example based on an interoperable Operating Room table (OR table)

    Influence of Human Factors on Cyber Security within Healthcare Organisations: A Systematic Review

    Get PDF
    Background: Cybersecurity is increasingly becoming a prominent concern among healthcare providers in adopting digital technologies for improving the quality of care delivered to patients. The recent reports on cyber attacks, such as ransomware and WannaCry, have brought to life the destructive nature of such attacks upon healthcare. In complement to cyberattacks, which have been targeted against the vulnerabilities of information technology (IT) infrastructures, a new form of cyber attack aims to exploit human vulnerabilities; such attacks are categorised as social engineering attacks. Following an increase in the frequency and ingenuity of attacks launched against hospitals and clinical environments with the intention of causing service disruption, there is a strong need to study the level of awareness programmes and training activities offered to the staff by healthcare organisations. Objective: The objective of this systematic review is to identify commonly encountered factors that cybersecurity postures of a healthcare organisation, resulting from the ignorance of cyber threat to healthcare. The systematic review aims to consolidate the current literature being reported upon human behaviour resulting in security gaps that mitigate the cyber defence strategy adopted by healthcare organisations. Additionally, the paper also reviews the organisational risk assessment methodology implemented and the policies being adopted to strengthen cybersecurity. Methods: The topic of cybersecurity within healthcare and the clinical environment has attracted the interest of several researchers, resulting in a broad range of literature. The inclusion criteria for the articles in the review stem from the scope of the five research questions identified. To this end, we conducted seven search queries across three repositories, namely (i) PubMed®/MED-LINE; (ii) Cumulative Index to Nursing and Allied Health Literature (CINAHL); and (iii) Web of Science (WoS), using key words related to cybersecurity awareness, training, organisation risk assessment methodologies, policies and recommendations adopted as counter measures within health care. These were restricted to around the last 12 years. Results: A total of 70 articles were selected to be included in the review, which addresses the complexity of cybersecurity measures adopted within the healthcare and clinical environments. The articles included in the review highlight the evolving nature of cybersecurity threats stemming from exploiting IT infrastructures to more advanced attacks launched with the intent of exploiting human vulnerability. A steady increase in the literature on the threat of phishing attacks evidences the growing threat of social engineering attacks. As a countermeasure, through the review, we identified articles that provide methodologies resulting from case studies to promote cybersecurity awareness among stakeholders. The articles included highlight the need to adopt cyber hygiene practices among healthcare professionals while accessing social media platforms, which forms an ideal test bed for the attackers to gain insight into the life of healthcare professionals. Additionally, the review also includes articles that present strategies adopted by healthcare organisations in countering the impact of social engineering attacks. The evaluation of the cybersecurity risk assessment of an organisation is another key area of study reported in the literature that recommends the organisation of European and international standards in countering social engineering attacks. Lastly, the review includes articles reporting on national case studies with an overview of the economic and societal impact of service disruptions encountered due to cyberattacks. Discussion: One of the limitations of the review is the subjective ranking of the authors associated to the relevance of literature to each of the research questions identified. We also acknowledge the limited amount of literature that focuses on human factors of cybersecurity in health care in general; therefore, the search queries were formulated using well-established cybersecurity related topics categorised according to the threats, risk assessment and organisational strategies reported in the literature.</jats:p
    corecore