18,445 research outputs found

    Multi-agent evolutionary systems for the generation of complex virtual worlds

    Full text link
    Modern films, games and virtual reality applications are dependent on convincing computer graphics. Highly complex models are a requirement for the successful delivery of many scenes and environments. While workflows such as rendering, compositing and animation have been streamlined to accommodate increasing demands, modelling complex models is still a laborious task. This paper introduces the computational benefits of an Interactive Genetic Algorithm (IGA) to computer graphics modelling while compensating the effects of user fatigue, a common issue with Interactive Evolutionary Computation. An intelligent agent is used in conjunction with an IGA that offers the potential to reduce the effects of user fatigue by learning from the choices made by the human designer and directing the search accordingly. This workflow accelerates the layout and distribution of basic elements to form complex models. It captures the designer's intent through interaction, and encourages playful discovery

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    The 'what' and 'how' of learning in design, invited paper

    Get PDF
    Previous experiences hold a wealth of knowledge which we often take for granted and use unknowingly through our every day working lives. In design, those experiences can play a crucial role in the success or failure of a design project, having a great deal of influence on the quality, cost and development time of a product. But how can we empower computer based design systems to acquire this knowledge? How would we use such systems to support design? This paper outlines some of the work which has been carried out in applying and developing Machine Learning techniques to support the design activity; particularly in utilising previous designs and learning the design process

    An expert system for automatic design-for-assembly

    Get PDF

    Agent collaboration in a multi-agent-system for analysis and optimization of mechanical engineering parts

    Get PDF
    In mechanical engineering, designers have to review a designed artefact iteratively with different domain experts, e.g. from manufacturing, to avoid later changes and find a robust, optimized design. To support the designer, knowledge-based engineering offers a set of approaches and techniques that formalize and implement engineering knowledge into generic product models or decision support systems. An implementation which satisfies especially the concurrent nature of today's design processes and allow for multi-objective decision-making is multi-agent systems. Such systems consist of entities that are capable of autonomous action, interact intelligently with their environment, communicate and collaborate. In this paper, such a multi-agent system is discussed as extension for a computer-aided design software where the agents take the role of domain experts, like e.g. manufacturing technologists and make suggestions for the optimization of the design of mechanical engineering parts. A focal point is set on the collaboration concept of the single agents. Therefore, the paper proposes the use of an action-item-list as central information and knowledge sharing platform. © 2020 The Authors. Published by Elsevier B.V

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Shape interpretation with design computing

    Get PDF
    How information is interpreted has significant impact on how it can be used. This is particularly important in design where information from a wide variety of sources is used in a wide variety of contexts and in a wide variety of ways. This paper is concerned with the information that is created, modified and analysed during design processes, specifically with the information that is represented in shapes. It investigates how design computing seeks to support these processes, and the difficulties that arise when it is necessary to consider alternative interpretations of shape. The aim is to establish the problem of shape interpretation as a general challenge for research in design computing, rather than a difficulty that is to be overcome within specific processes. Shape interpretations are common characteristics of several areas of enquiry in design computing. This paper reviews these, brings an integrated perspective and draws conclusions about how this underlying process can be supported

    Intelligent agent for formal modelling of temporal multi-agent systems

    Get PDF
    Software systems are becoming complex and dynamic with the passage of time, and to provide better fault tolerance and resource management they need to have the ability of self-adaptation. Multi-agent systems paradigm is an active area of research for modeling real-time systems. In this research, we have proposed a new agent named SA-ARTIS-agent, which is designed to work in hard real-time temporal constraints with the ability of self-adaptation. This agent can be used for the formal modeling of any self-adaptive real-time multi-agent system. Our agent integrates the MAPE-K feedback loop with ARTIS agent for the provision of self-adaptation. For an unambiguous description, we formally specify our SA-ARTIS-agent using Time-Communicating Object-Z (TCOZ) language. The objective of this research is to provide an intelligent agent with self-adaptive abilities for the execution of tasks with temporal constraints. Previous works in this domain have used Z language which is not expressive to model the distributed communication process of agents. The novelty of our work is that we specified the non-terminating behavior of agents using active class concept of TCOZ and expressed the distributed communication among agents. For communication between active entities, channel communication mechanism of TCOZ is utilized. We demonstrate the effectiveness of the proposed agent using a real-time case study of traffic monitoring system

    A new paradigm based on agents applied to free-hand sketch recognition

    Get PDF
    Important advances in natural calligraphic interfaces for CAD (Computer Aided Design) applications are being achieved, enabling the development of CAS (Computer Aided Sketching) devices that allow facing up to the conceptual design phase of a product. Recognizers play an important role in this field, allowing the interpretation of the user’s intention, but they still present some important lacks. This paper proposes a new recognition paradigm using an agent-based architecture that does not depend on the drawing sequence and takes context information into account to help decisions. Another improvement is the absence of operation modes, that is, no button is needed to distinguish geometry from symbols or gestures, and also “interspersing” and “overtracing” are accomplishedThe Spanish Ministry of Science and Education and the FEDER Funds, through the CUESKETCH project (Ref. DPI2007-66755-C02-01), partially supported this work.Fernández Pacheco, D.; Albert Gil, FE.; Aleixos Borrás, MN.; Conesa Pastor, J. (2012). A new paradigm based on agents applied to free-hand sketch recognition. Expert Systems with Applications. 39(8):7181-7195. https://doi.org/10.1016/j.eswa.2012.01.063S7181719539
    corecore