2,682 research outputs found

    Performance-oriented Cloud Provisioning: Taxonomy and Survey

    Full text link
    Cloud computing is being viewed as the technology of today and the future. Through this paradigm, the customers gain access to shared computing resources located in remote data centers that are hosted by cloud providers (CP). This technology allows for provisioning of various resources such as virtual machines (VM), physical machines, processors, memory, network, storage and software as per the needs of customers. Application providers (AP), who are customers of the CP, deploy applications on the cloud infrastructure and then these applications are used by the end-users. To meet the fluctuating application workload demands, dynamic provisioning is essential and this article provides a detailed literature survey of dynamic provisioning within cloud systems with focus on application performance. The well-known types of provisioning and the associated problems are clearly and pictorially explained and the provisioning terminology is clarified. A very detailed and general cloud provisioning classification is presented, which views provisioning from different perspectives, aiding in understanding the process inside-out. Cloud dynamic provisioning is explained by considering resources, stakeholders, techniques, technologies, algorithms, problems, goals and more.Comment: 14 pages, 3 figures, 3 table

    Intelligent visual media processing: when graphics meets vision

    Get PDF
    The computer graphics and computer vision communities have been working closely together in recent years, and a variety of algorithms and applications have been developed to analyze and manipulate the visual media around us. There are three major driving forces behind this phenomenon: i) the availability of big data from the Internet has created a demand for dealing with the ever increasing, vast amount of resources; ii) powerful processing tools, such as deep neural networks, provide e�ective ways for learning how to deal with heterogeneous visual data; iii) new data capture devices, such as the Kinect, bridge between algorithms for 2D image understanding and 3D model analysis. These driving forces have emerged only recently, and we believe that the computer graphics and computer vision communities are still in the beginning of their honeymoon phase. In this work we survey recent research on how computer vision techniques bene�t computer graphics techniques and vice versa, and cover research on analysis, manipulation, synthesis, and interaction. We also discuss existing problems and suggest possible further research directions

    A note on brain actuated spelling with the Berlin brain-computer interface

    Get PDF
    Brain-Computer Interfaces (BCIs) are systems capable of decoding neural activity in real time, thereby allowing a computer application to be directly controlled by the brain. Since the characteristics of such direct brain-tocomputer interaction are limited in several aspects, one major challenge in BCI research is intelligent front-end design. Here we present the mental text entry application ‘Hex-o-Spell’ which incorporates principles of Human-Computer Interaction research into BCI feedback design. The system utilises the high visual display bandwidth to help compensate for the extremely limited control bandwidth which operates with only two mental states, where the timing of the state changes encodes most of the information. The display is visually appealing, and control is robust. The effectiveness and robustness of the interface was demonstrated at the CeBIT 2006 (world’s largest IT fair) where two subjects operated the mental text entry system at a speed of up to 7.6 char/min

    Combining LiDAR Space Clustering and Convolutional Neural Networks for Pedestrian Detection

    Get PDF
    Pedestrian detection is an important component for safety of autonomous vehicles, as well as for traffic and street surveillance. There are extensive benchmarks on this topic and it has been shown to be a challenging problem when applied on real use-case scenarios. In purely image-based pedestrian detection approaches, the state-of-the-art results have been achieved with convolutional neural networks (CNN) and surprisingly few detection frameworks have been built upon multi-cue approaches. In this work, we develop a new pedestrian detector for autonomous vehicles that exploits LiDAR data, in addition to visual information. In the proposed approach, LiDAR data is utilized to generate region proposals by processing the three dimensional point cloud that it provides. These candidate regions are then further processed by a state-of-the-art CNN classifier that we have fine-tuned for pedestrian detection. We have extensively evaluated the proposed detection process on the KITTI dataset. The experimental results show that the proposed LiDAR space clustering approach provides a very efficient way of generating region proposals leading to higher recall rates and fewer misses for pedestrian detection. This indicates that LiDAR data can provide auxiliary information for CNN-based approaches

    Cloud-based or On-device: An Empirical Study of Mobile Deep Inference

    Full text link
    Modern mobile applications are benefiting significantly from the advancement in deep learning, e.g., implementing real-time image recognition and conversational system. Given a trained deep learning model, applications usually need to perform a series of matrix operations based on the input data, in order to infer possible output values. Because of computational complexity and size constraints, these trained models are often hosted in the cloud. To utilize these cloud-based models, mobile apps will have to send input data over the network. While cloud-based deep learning can provide reasonable response time for mobile apps, it restricts the use case scenarios, e.g. mobile apps need to have network access. With mobile specific deep learning optimizations, it is now possible to employ on-device inference. However, because mobile hardware, such as GPU and memory size, can be very limited when compared to its desktop counterpart, it is important to understand the feasibility of this new on-device deep learning inference architecture. In this paper, we empirically evaluate the inference performance of three Convolutional Neural Networks (CNNs) using a benchmark Android application we developed. Our measurement and analysis suggest that on-device inference can cost up to two orders of magnitude greater response time and energy when compared to cloud-based inference, and that loading model and computing probability are two performance bottlenecks for on-device deep inferences.Comment: Accepted at The IEEE International Conference on Cloud Engineering (IC2E) conference 201
    corecore