417 research outputs found

    A systematic review of natural language processing applied to radiology reports

    Get PDF
    NLP has a significant role in advancing healthcare and has been found to be key in extracting structured information from radiology reports. Understanding recent developments in NLP application to radiology is of significance but recent reviews on this are limited. This study systematically assesses recent literature in NLP applied to radiology reports. Our automated literature search yields 4,799 results using automated filtering, metadata enriching steps and citation search combined with manual review. Our analysis is based on 21 variables including radiology characteristics, NLP methodology, performance, study, and clinical application characteristics. We present a comprehensive analysis of the 164 publications retrieved with each categorised into one of 6 clinical application categories. Deep learning use increases but conventional machine learning approaches are still prevalent. Deep learning remains challenged when data is scarce and there is little evidence of adoption into clinical practice. Despite 17% of studies reporting greater than 0.85 F1 scores, it is hard to comparatively evaluate these approaches given that most of them use different datasets. Only 14 studies made their data and 15 their code available with 10 externally validating results. Automated understanding of clinical narratives of the radiology reports has the potential to enhance the healthcare process but reproducibility and explainability of models are important if the domain is to move applications into clinical use. More could be done to share code enabling validation of methods on different institutional data and to reduce heterogeneity in reporting of study properties allowing inter-study comparisons. Our results have significance for researchers providing a systematic synthesis of existing work to build on, identify gaps, opportunities for collaboration and avoid duplication

    Automatic Prediction of Recurrence of Major Cardiovascular Events: A Text Mining Study Using Chest X-Ray Reports

    Get PDF
    Background and Objective. Electronic health records (EHRs) contain free-text information on symptoms, diagnosis, treatment, and prognosis of diseases. However, this potential goldmine of health information cannot be easily accessed and used unless proper text mining techniques are applied. The aim of this project was to develop and evaluate a text mining pipeline in a multimodal learning architecture to demonstrate the value of medical text classification in chest radiograph reports for cardiovascular risk prediction. We sought to assess the integration of various text representation approaches and clinical structured data with state-of-the-art deep learning methods in the process of medical text mining. Methods. We used EHR data of patients included in the Second Manifestations of ARTerial disease (SMART) study. We propose a deep learning-based multimodal architecture for our text mining pipeline that integrates neural text representation with preprocessed clinical predictors for the prediction of recurrence of major cardiovascular events in cardiovascular patients. Text preprocessing, including cleaning and stemming, was first applied to filter out the unwanted texts from X-ray radiology reports. Thereafter, text representation methods were used to numerically represent unstructured radiology reports with vectors. Subsequently, these text representation methods were added to prediction models to assess their clinical relevance. In this step, we applied logistic regression, support vector machine (SVM), multilayer perceptron neural network, convolutional neural network, long short-term memory (LSTM), and bidirectional LSTM deep neural network (BiLSTM). Results. We performed various experiments to evaluate the added value of the text in the prediction of major cardiovascular events. The two main scenarios were the integration of radiology reports (1) with classical clinical predictors and (2) with only age and sex in the case of unavailable clinical predictors. In total, data of 5603 patients were used with 5-fold cross-validation to train the models. In the first scenario, the multimodal BiLSTM (MI-BiLSTM) model achieved an area under the curve (AUC) of 84.7%, misclassification rate of 14.3%, and F1 score of 83.8%. In this scenario, the SVM model, trained on clinical variables and bag-of-words representation, achieved the lowest misclassification rate of 12.2%. In the case of unavailable clinical predictors, the MI-BiLSTM model trained on radiology reports and demographic (age and sex) variables reached an AUC, F1 score, and misclassification rate of 74.5%, 70.8%, and 20.4%, respectively. Conclusions. Using the case study of routine care chest X-ray radiology reports, we demonstrated the clinical relevance of integrating text features and classical predictors in our text mining pipeline for cardiovascular risk prediction. The MI-BiLSTM model with word embedding representation appeared to have a desirable performance when trained on text data integrated with the clinical variables from the SMART study. Our results mined from chest X-ray reports showed that models using text data in addition to laboratory values outperform those using only known clinical predictors

    CCheXR-Attention: Clinical concept extraction and chest x-ray reports classification using modified Mogrifier and bidirectional LSTM with multihead attention

    Get PDF
    Radiology reports cover different aspects, from radiological observation to the diagnosis of an imaging examination, such as X-rays, MRI, and CT scans. Abundant patient information presented in radiology reports poses a few major challenges. First, radiology reports follow a free-text reporting format, which causes the loss of a large amount of information in unstructured text. Second, the extraction of important features from these reports is a huge bottleneck for machine learning models. These challenges are important, particularly the extraction of key features such as symptoms, comparison/priors, technique, finding, and impression because they facilitate the decision-making on patients’ health. To alleviate this issue, a novel architecture CCheXR-Attention is proposed to extract the clinical features from the radiological reports and classify each report into normal and abnormal categories based on the extracted information. We have proposed a modified mogrifier LSTM model and integrated a multihead attention method to extract the more relevant features. Experimental outcomes on two benchmark datasets demonstrated that the proposed model surpassed state-of-the-art models
    • …
    corecore