102 research outputs found

    Artificial intelligence empowered virtual network function deployment and service function chaining for next-generation networks

    Get PDF
    The entire Internet of Things (IoT) ecosystem is directing towards a high volume of diverse applications. From smart healthcare to smart cities, every ubiquitous digital sector provisions automation for an immersive experience. Augmented/Virtual reality, remote surgery, and autonomous driving expect high data rates and ultra-low latency. The Network Function Virtualization (NFV) based IoT infrastructure of decoupling software services from proprietary devices has been extremely popular due to cutting back significant deployment and maintenance expenditure in the telecommunication industry. Another substantially highlighted technological trend for delaysensitive IoT applications has emerged as multi-access edge computing (MEC). MEC brings NFV to the network edge (in closer proximity to users) for faster computation. Among the massive pool of IoT services in NFV context, the urgency for efficient edge service orchestration is constantly growing. The emerging challenges are addressed as collaborative optimization of resource utilities and ensuring Quality-ofService (QoS) with prompt orchestration in dynamic, congested, and resource-hungry IoT networks. Traditional mathematical programming models are NP-hard, hence inappropriate for time-sensitive IoT environments. In this thesis, we promote the need to go beyond the realms and leverage artificial intelligence (AI) based decision-makers for “smart” service management. We offer different methods of integrating supervised and reinforcement learning techniques to support future-generation wireless network optimization problems. Due to the combinatorial explosion of some service orchestration problems, supervised learning is more superior to reinforcement learning performance-wise. Unfortunately, open access and standardized datasets for this research area are still in their infancy. Thus, we utilize the optimal results retrieved by Integer Linear Programming (ILP) for building labeled datasets to train supervised models (e.g., artificial neural networks, convolutional neural networks). Furthermore, we find that ensemble models are better than complex single networks for control layer intelligent service orchestration. Contrarily, we employ Deep Q-learning (DQL) for heavily constrained service function chaining optimization. We carefully address key performance indicators (e.g., optimality gap, service time, relocation and communication costs, resource utilization, scalability intelligence) to evaluate the viability of prospective orchestration schemes. We envision that AI-enabled network management can be regarded as a pioneering tread to scale down massive IoT resource fabrication costs, upgrade profit margin for providers, and sustain QoS mutuall

    Recent Advances in Machine Learning for Network Automation in the O-RAN

    Get PDF
    © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/The evolution of network technologies has witnessed a paradigm shift toward open and intelligent networks, with the Open Radio Access Network (O-RAN) architecture emerging as a promising solution. O-RAN introduces disaggregation and virtualization, enabling network operators to deploy multi-vendor and interoperable solutions. However, managing and automating the complex O-RAN ecosystem presents numerous challenges. To address this, machine learning (ML) techniques have gained considerable attention in recent years, offering promising avenues for network automation in O-RAN. This paper presents a comprehensive survey of the current research efforts on network automation using ML in O-RAN. We begin by providing an overview of the O-RAN architecture and its key components, highlighting the need for automation. Subsequently, we delve into O-RAN support for ML techniques. The survey then explores challenges in network automation using ML within the O-RAN environment, followed by the existing research studies discussing application of ML algorithms and frameworks for network automation in O-RAN. The survey further discusses the research opportunities by identifying important aspects where ML techniques can benefit.Peer reviewe

    Learning Augmented Optimization for Network Softwarization in 5G

    Get PDF
    The rapid uptake of mobile devices and applications are posing unprecedented traffic burdens on the existing networking infrastructures. In order to maximize both user experience and investment return, the networking and communications systems are evolving to the next gen- eration – 5G, which is expected to support more flexibility, agility, and intelligence towards provisioned services and infrastructure management. Fulfilling these tasks is challenging, as nowadays networks are increasingly heterogeneous, dynamic and expanded with large sizes. Network softwarization is one of the critical enabling technologies to implement these requirements in 5G. In addition to these problems investigated in preliminary researches about this technology, many new emerging application requirements and advanced opti- mization & learning technologies are introducing more challenges & opportunities for its fully application in practical production environment. This motivates this thesis to develop a new learning augmented optimization technology, which merges both the advanced opti- mization and learning techniques to meet the distinct characteristics of the new application environment. To be more specific, the abstracts of the key contents in this thesis are listed as follows: • We first develop a stochastic solution to augment the optimization of the Network Function Virtualization (NFV) services in dynamical networks. In contrast to the dominant NFV solutions applied for the deterministic networking environments, the inherent network dynamics and uncertainties from 5G infrastructure are impeding the rollout of NFV in many emerging networking applications. Therefore, Chapter 3 investigates the issues of network utility degradation when implementing NFV in dynamical networks, and proposes a robust NFV solution with full respect to the underlying stochastic features. By exploiting the hierarchical decision structures in this problem, a distributed computing framework with two-level decomposition is designed to facilitate a distributed implementation of the proposed model in large-scale networks. • Next, Chapter 4 aims to intertwin the traditional optimization and learning technologies. In order to reap the merits of both optimization and learning technologies but avoid their limitations, promissing integrative approaches are investigated to combine the traditional optimization theories with advanced learning methods. Subsequently, an online optimization process is designed to learn the system dynamics for the network slicing problem, another critical challenge for network softwarization. Specifically, we first present a two-stage slicing optimization model with time-averaged constraints and objective to safeguard the network slicing operations in time-varying networks. Directly solving an off-line solution to this problem is intractable since the future system realizations are unknown before decisions. To address this, we combine the historical learning and Lyapunov stability theories, and develop a learning augmented online optimization approach. This facilitates the system to learn a safe slicing solution from both historical records and real-time observations. We prove that the proposed solution is always feasible and nearly optimal, up to a constant additive factor. Finally, simulation experiments are also provided to demonstrate the considerable improvement of the proposals. • The success of traditional solutions to optimizing the stochastic systems often requires solving a base optimization program repeatedly until convergence. For each iteration, the base program exhibits the same model structure, but only differing in their input data. Such properties of the stochastic optimization systems encourage the work of Chapter 5, in which we apply the latest deep learning technologies to abstract the core structures of an optimization model and then use the learned deep learning model to directly generate the solutions to the equivalent optimization model. In this respect, an encoder-decoder based learning model is developed in Chapter 5 to improve the optimization of network slices. In order to facilitate the solving of the constrained combinatorial optimization program in a deep learning manner, we design a problem-specific decoding process by integrating program constraints and problem context information into the training process. The deep learning model, once trained, can be used to directly generate the solution to any specific problem instance. This avoids the extensive computation in traditional approaches, which re-solve the whole combinatorial optimization problem for every instance from the scratch. With the help of the REINFORCE gradient estimator, the obtained deep learning model in the experiments achieves significantly reduced computation time and optimality loss

    Machine Learning-Powered Management Architectures for Edge Services in 5G Networks

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Scalable Orchestration of Service Function Chains in NFV-Enabled Networks: A Federated Reinforcement Learning Approach

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordNetwork function virtualization (NFV) is critical to the scalability and flexibility of various network services in the form of service function chains (SFCs), which refer to a set of Virtual Network Functions (VNFs) chained in a specific order. However, the NFV performance is hard to fulfill the ever-increasing requirements of network services mainly due to the static orchestrations of SFCs. To tackle this issue, a novel Scalable SFC Orchestration (SSCO) scheme is proposed in this paper for NFV-enabled networks via federated reinforcement learning. SSCO has three remarkable characteristics distinguishing from the previous work: (1) A federated-learning-based framework is designed to train a global learning model, with time-variant local model explorations, for scalable SFC orchestration, while avoiding data sharing among stakeholders; (2) SSCO allows for parameter update among local clients and the cloud server just at the first and last epochs of each episode to ensure that distributed clients can make model optimization at a low communication cost; (3) SSCO introduces an efficient deep reinforcement learning (DRL) approach, with the local learning knowledge of available resources and instantiation cost, to map VNFs into networks flexibly. Furthermore, a loss-weight-based mechanism is proposed to generate and exploit reference samples in replay buffers for future training, avoiding the strong relevance of samples. Simulation results obtained from different working scenarios demonstrate that SSCO can significantly reduce placement errors and improve resource utilization ratio to place time-variant VNFs compared with the state-of-the-art mechanisms. Furthermore, the results show that the proposed approach can achieve desirable scalability

    NFV Platforms: Taxonomy, Design Choices and Future Challenges

    Get PDF
    Due to the intrinsically inefficient service provisioning in traditional networks, Network Function Virtualization (NFV) keeps gaining attention from both industry and academia. By replacing the purpose-built, expensive, proprietary network equipment with software network functions consolidated on commodity hardware, NFV envisions a shift towards a more agile and open service provisioning paradigm. During the last few years, a large number of NFV platforms have been implemented in production environments that typically face critical challenges, including the development, deployment, and management of Virtual Network Functions (VNFs). Nonetheless, just like any complex system, such platforms commonly consist of abounding software and hardware components and usually incorporate disparate design choices based on distinct motivations or use cases. This broad collection of convoluted alternatives makes it extremely arduous for network operators to make proper choices. Although numerous efforts have been devoted to investigating different aspects of NFV, none of them specifically focused on NFV platforms or attempted to explore their design space. In this paper, we present a comprehensive survey on the NFV platform design. Our study solely targets existing NFV platform implementations. We begin with a top-down architectural view of the standard reference NFV platform and present our taxonomy of existing NFV platforms based on what features they provide in terms of a typical network function life cycle. Then we thoroughly explore the design space and elaborate on the implementation choices each platform opts for. We also envision future challenges for NFV platform design in the incoming 5G era. We believe that our study gives a detailed guideline for network operators or service providers to choose the most appropriate NFV platform based on their respective requirements. Our work also provides guidelines for implementing new NFV platforms

    A Survey of Intelligent Network Slicing Management for Industrial IoT: Integrated Approaches for Smart Transportation, Smart Energy, and Smart Factory

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordNetwork slicing has been widely agreed as a promising technique to accommodate diverse services for the Industrial Internet of Things (IIoT). Smart transportation, smart energy, and smart factory/manufacturing are the three key services to form the backbone of IIoT. Network slicing management is of paramount importance in the face of IIoT services with diversified requirements. It is important to have a comprehensive survey on intelligent network slicing management to provide guidance for future research in this field. In this paper, we provide a thorough investigation and analysis of network slicing management in its general use cases as well as specific IIoT services including smart transportation, smart energy and smart factory, and highlight the advantages and drawbacks across many existing works/surveys and this current survey in terms of a set of important criteria. In addition, we present an architecture for intelligent network slicing management for IIoT focusing on the above three IIoT services. For each service, we provide a detailed analysis of the application requirements and network slicing architecture, as well as the associated enabling technologies. Further, we present a deep understanding of network slicing orchestration and management for each service, in terms of orchestration architecture, AI-assisted management and operation, edge computing empowered network slicing, reliability, and security. For the presented architecture for intelligent network slicing management and its application in each IIoT service, we identify the corresponding key challenges and open issues that can guide future research. To facilitate the understanding of the implementation, we provide a case study of the intelligent network slicing management for integrated smart transportation, smart energy, and smart factory. Some lessons learnt include: 1) For smart transportation, it is necessary to explicitly identify service function chains (SFCs) for specific applications along with the orchestration of underlying VNFs/PNFs for supporting such SFCs; 2) For smart energy, it is crucial to guarantee both ultra-low latency and extremely high reliability; 3) For smart factory, resource management across heterogeneous network domains is of paramount importance. We hope that this survey is useful for both researchers and engineers on the innovation and deployment of intelligent network slicing management for IIoT.Engineering and Physical Sciences Research Council (EPSRC)Singapore University of Technology and Design (SUTD)Hong Kong RGC Research Impact Fund (RIF)National Natural Science Foundation of ChinaShenzhen Science and Technology Innovation Commissio

    Autonomy and Intelligence in the Computing Continuum: Challenges, Enablers, and Future Directions for Orchestration

    Full text link
    Future AI applications require performance, reliability and privacy that the existing, cloud-dependant system architectures cannot provide. In this article, we study orchestration in the device-edge-cloud continuum, and focus on AI for edge, that is, the AI methods used in resource orchestration. We claim that to support the constantly growing requirements of intelligent applications in the device-edge-cloud computing continuum, resource orchestration needs to embrace edge AI and emphasize local autonomy and intelligence. To justify the claim, we provide a general definition for continuum orchestration, and look at how current and emerging orchestration paradigms are suitable for the computing continuum. We describe certain major emerging research themes that may affect future orchestration, and provide an early vision of an orchestration paradigm that embraces those research themes. Finally, we survey current key edge AI methods and look at how they may contribute into fulfilling the vision of future continuum orchestration.Comment: 50 pages, 8 figures (Revised content in all sections, added figures and new section
    • …
    corecore