23,200 research outputs found

    A rapid prototyping/artificial intelligence approach to space station-era information management and access

    Get PDF
    Applications of rapid prototyping and Artificial Intelligence techniques to problems associated with Space Station-era information management systems are described. In particular, the work is centered on issues related to: (1) intelligent man-machine interfaces applied to scientific data user support, and (2) the requirement that intelligent information management systems (IIMS) be able to efficiently process metadata updates concerning types of data handled. The advanced IIMS represents functional capabilities driven almost entirely by the needs of potential users. Space Station-era scientific data projected to be generated is likely to be significantly greater than data currently processed and analyzed. Information about scientific data must be presented clearly, concisely, and with support features to allow users at all levels of expertise efficient and cost-effective data access. Additionally, mechanisms for allowing more efficient IIMS metadata update processes must be addressed. The work reported covers the following IIMS design aspects: IIMS data and metadata modeling, including the automatic updating of IIMS-contained metadata, IIMS user-system interface considerations, including significant problems associated with remote access, user profiles, and on-line tutorial capabilities, and development of an IIMS query and browse facility, including the capability to deal with spatial information. A working prototype has been developed and is being enhanced

    A Query Integrator and Manager for the Query Web

    Get PDF
    We introduce two concepts: the Query Web as a layer of interconnected queries over the document web and the semantic web, and a Query Web Integrator and Manager (QI) that enables the Query Web to evolve. QI permits users to write, save and reuse queries over any web accessible source, including other queries saved in other installations of QI. The saved queries may be in any language (e.g. SPARQL, XQuery); the only condition for interconnection is that the queries return their results in some form of XML. This condition allows queries to chain off each other, and to be written in whatever language is appropriate for the task. We illustrate the potential use of QI for several biomedical use cases, including ontology view generation using a combination of graph-based and logical approaches, value set generation for clinical data management, image annotation using terminology obtained from an ontology web service, ontology-driven brain imaging data integration, small-scale clinical data integration, and wider-scale clinical data integration. Such use cases illustrate the current range of applications of QI and lead us to speculate about the potential evolution from smaller groups of interconnected queries into a larger query network that layers over the document and semantic web. The resulting Query Web could greatly aid researchers and others who now have to manually navigate through multiple information sources in order to answer specific questions

    The relationship between IR and multimedia databases

    Get PDF
    Modern extensible database systems support multimedia data through ADTs. However, because of the problems with multimedia query formulation, this support is not sufficient.\ud \ud Multimedia querying requires an iterative search process involving many different representations of the objects in the database. The support that is needed is very similar to the processes in information retrieval.\ud \ud Based on this observation, we develop the miRRor architecture for multimedia query processing. We design a layered framework based on information retrieval techniques, to provide a usable query interface to the multimedia database.\ud \ud First, we introduce a concept layer to enable reasoning over low-level concepts in the database.\ud \ud Second, we add an evidential reasoning layer as an intermediate between the user and the concept layer.\ud \ud Third, we add the functionality to process the users' relevance feedback.\ud \ud We then adapt the inference network model from text retrieval to an evidential reasoning model for multimedia query processing.\ud \ud We conclude with an outline for implementation of miRRor on top of the Monet extensible database system

    Object-oriented querying of existing relational databases

    Get PDF
    In this paper, we present algorithms which allow an object-oriented querying of existing relational databases. Our goal is to provide an improved query interface for relational systems with better query facilities than SQL. This seems to be very important since, in real world applications, relational systems are most commonly used and their dominance will remain in the near future. To overcome the drawbacks of relational systems, especially the poor query facilities of SQL, we propose a schema transformation and a query translation algorithm. The schema transformation algorithm uses additional semantic information to enhance the relational schema and transform it into a corresponding object-oriented schema. If the additional semantic information can be deducted from an underlying entity-relationship design schema, the schema transformation may be done fully automatically. To query the created object-oriented schema, we use the Structured Object Query Language (SOQL) which provides declarative query facilities on objects. SOQL queries using the created object-oriented schema are much shorter, easier to write and understand and more intuitive than corresponding S Q L queries leading to an enhanced usability and an improved querying of the database. The query translation algorithm automatically translates SOQL queries into equivalent SQL queries for the original relational schema

    A Molecular Biology Database Digest

    Get PDF
    Computational Biology or Bioinformatics has been defined as the application of mathematical and Computer Science methods to solving problems in Molecular Biology that require large scale data, computation, and analysis [18]. As expected, Molecular Biology databases play an essential role in Computational Biology research and development. This paper introduces into current Molecular Biology databases, stressing data modeling, data acquisition, data retrieval, and the integration of Molecular Biology data from different sources. This paper is primarily intended for an audience of computer scientists with a limited background in Biology
    corecore