5,051 research outputs found

    Bringing Authoring Tools for Intelligent Tutoring Systems and Serious Games Closer Together: Integrating GIFT with the Unity Game Engine

    Get PDF
    In an effort to bring intelligent tutoring system (ITS) authoring tools closer to content authoring tools, the authors are working to integrate GIFT with the Unity game engine and editor. The paper begins by describing challenges faced by modern intelligent tutors and the motivation behind the integration effort, with special consideration given to how this work will better meet the needs of future serious games. The next three sections expand on these major hurdles more thoroughly, followed by proposed design enhancements that would allow GIFT to overcome these issues. Finally, an overview is given of the authors’ current progress towards implementing the proposed design. The key contribution of this work is an abstraction of the interface between intelligent tutoring systems and serious games, thus enabling ITS authors to implement more complex training behaviors

    Intelligent Tutoring System Authoring Tools for Non-Programmers

    Get PDF
    An intelligent tutoring system (ITS) is a software application that tries to replicate the performance of a human tutor by supporting the theory of learning by doing . ITSs have been shown to improve the performance of a student in wide range of domains. Despite their benefits, ITSs have not seen widespread use due to the complexity involved in their development. Developing an ITS from scratch requires expertise in several fields including computer science, cognitive psychology and artificial intelligence. In order to decrease the skill threshold required to build ITSs, several authoring tools have been developed. In this thesis, I document several contributions to the field of intelligent tutoring in the form of extensions to an existing ITS authoring tool, research studies on authoring tool paradigms and the design of authoring tools for non-programmers in two complex domains - natural language processing and 3D game environments. The Extensible Problem Specific Tutor (xPST) is an authoring tool that helps rapidly develop model-tracing like tutors on existing interfaces such as webpages. xPST\u27s language was made more expressive with the introduction of new checktypes required for answer checking in problems belonging to domains such as geometry and statistics. A web-based authoring (WAT) tool was developed for the purpose of tutor management and deployment and to promote non-programmer authoring of ITSs. The WAT was used in a comparison study between two authoring tool paradigms - GUI based and text based, in two different problem domains - statistics and geometry. User-programming of natural language processing (NLP) in ITSs is not common with authoring toolkits. Existing NLP techniques do not offer sufficient power to non-programmers and the NLP is left to expert developers or machine learning algorithms. We attempted to address this challenge by developing a domain-independent authoring tool, ConceptGrid that is intended to help non-programmers develop ITSs that perform natural language processing. ConceptGrid has been integrated into xPST. When templates created using ConceptGrid were tested, they approached the accuracy of human instructors in scoring student responses. 3D game environments belong to another domain for which authoring tools are uncommon. Authoring game-based tutors is challenging due to the inherent domain complexity and dynamic nature of the environment. We attempt to address this challenge through the design of authoring tool that is intended to help non-programmers develop game-based ITSs

    Developing an Affordable Authoring Tool For Intelligent Tutoring Systems

    Get PDF
    Intelligent tutoring systems (ITSs) are computer based tutoring systems that provide individualized tutoring to the students. Building an ITS is recognized to be expensive task in terms of cost and resources. Authoring tools provide a framework and an environment for building the ITSs that help to reduce the resources like skills, time and cost required to build an intelligent tutoring system. In this thesis we have implemented the Cognitive Tutor Authoring Tools (CTAT) and performed experiments to empirically determine the common programming errors that authors tend to make while building an ITS and study what is hard in authoring an ITS. The CTAT were used in a graduate class at Worcester Polytechnic Institute and also at the 4th Summer school organized at the Carnegie Mellon University. Based on the analysis of the experiments we suggest future work to reduce the debugging time and thereby reduce the time required to author an ITS. We also implemented the model tracing algorithm in JESS, evaluated its performance and compared to that of the model tracing algorithm in TDK. This research is funded by the Office of Naval Research (Grant # N00014-0301-0221)

    Authoring Content in the PAT Algebra Tutor

    Get PDF
    Most authoring tools for intelligent tutoring systems are targeted towards a broad range of applications. Such systems have expressive power but gain the complexity inherent in any general programming language. This paper considers a different kind of authoring tool, focused on creating content for a specific intelligent tutoring system. The resulting system, called pSAT, addresses the great demand for continuing development of content. A system like pSAT needs to be easily learned by end-users and needs to provide feedback adequate for the user to be able to determine that the system will correctly present the content under a wide range of user strategies, preferences and abilities. We focus on design principles driven by these considerations and conclude with a development strategy that begins with a closely-focused content authoring system and then broadens to a system that can more fundamentally affect the type of content presented by the intelligent tutoring system. Reviewers: Chris DiGiano (SRI), Greg Kearsley (Nova Southeastern U.), Henry Lieberman (MIT) Interactive elements: 'The Problem Situation Authoring Tool (pSAT) described in this article is available online.' Demonstration: The Problem Situation Authoring Tool (pSAT) described in this article is available at http://domino.psy.cmu.edu:81/best/psat.html. An online version of the Practical Algebra Tutor, PAT OnLine, is available at http://domino.psy.cmu.edu/patonline.html

    Template-driven teacher modelling approach : a thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Information Science at Massey University, Palmerston North

    Get PDF
    This thesis describes the Template-driven Teacher Modeling Approach, the initial implementation of the template server and the formative evaluation on the prototype. The initiative of Template-driven teacher modeling is to integrate the template server and intelligent teacher models in Web-based education systems for course authoring. There are a number of key components in the proposed system: user interface, template server and content repository. The Template-Driven Teacher Modeling (TDTM) architecture supports the course authoring by providing higher degree of control over the generation of presentation. The collection of accumulated templates in the template repository for a teacher or a group of teachers are selected as the inputs for the inference mechanism in teacher's model to calculate the best representation of the teaching strategy, and then predict teacher intention when he or she interacts with the system. Moreover, the presentation templates are kept to support the re-use of the on-line content at the level of individual screens with the help of Template Server

    Design and Development of an Intelligent Tutoring System for C# Language

    Get PDF
    Learning programming is thought to be troublesome. One doable reason why students don’t do well in programming is expounded to the very fact that traditional way of learning within the lecture hall adds more stress on students in understanding the Material rather than applying the Material to a true application. For a few students, this teaching model might not catch their interest. As a result, they'll not offer their best effort to grasp the Material given. Seeing however the information is applied to real issues will increase student interest in learning. As a consequence, this may increase their effort to be taught. In the current paper, we try to help students learn C# programming language using Intelligent Tutoring System. This ITS was developed using ITSB authoring tool to be able to help the student learn programming efficiently and make the learning procedure very pleasing. A knowledge base using ITSB authoring tool style was used to represent the student's work and to give customized feedback and support to students

    ARDUINO Tutor: An Intelligent Tutoring System for Training on ARDUINO

    Get PDF
    This paper aims at helping trainees to overcome the difficulties they face when dealing with Arduino platform by describing the design of a desktop based intelligent tutoring system. The main idea of this system is a systematic introduction into the concept of Arduino platform. The system shows the circuit boards of Arduino that can be purchased at low cost or assembled from freely-available plans; and an open-source development environment and library for writing code to control the board topic of Arduino platform. The system is adaptive with the trainee’s individual progress. The system functions as a special tutor who deals with trainees according to their levels and skills. Evaluation of the system has been applied on professional and unprofessional trainees in this field and the results were good

    A group learning management method for intelligent tutoring systems

    Get PDF
    In this paper we propose a group management specification and execution method that seeks a compromise between simple course design and complex adaptive group interaction. This is achieved through an authoring method that proposes predefined scenarios to the author. These scenarios already include complex learning interaction protocols in which student and group models use and update are automatically included. The method adopts ontologies to represent domain and student models, and object Petri nets to specify the group interaction protocols. During execution, the method is supported by a multi-agent architecture

    Adaptive Intelligent Tutoring System for learning Computer Theory

    Get PDF
    In this paper, we present an intelligent tutoring system developed to help students in learning Computer Theory. The Intelligent tutoring system was built using ITSB authoring tool. The system helps students to learn finite automata, pushdown automata, Turing machines and examines the relationship between these automata and formal languages, deterministic and nondeterministic machines, regular expressions, context free grammars, undecidability, and complexity. During the process the intelligent tutoring system gives assistance and feedback of many types in an intelligent manner according to the behavior of the student. An evaluation of the intelligent tutoring system has revealed reasonably acceptable results in terms of its usability and learning abilities are concerned

    Adaptive hypermedia for education and training

    Get PDF
    Adaptive hypermedia (AH) is an alternative to the traditional, one-size-fits-all approach in the development of hypermedia systems. AH systems build a model of the goals, preferences, and knowledge of each individual user; this model is used throughout the interaction with the user to adapt to the needs of that particular user (Brusilovsky, 1996b). For example, a student in an adaptive educational hypermedia system will be given a presentation that is adapted specifically to his or her knowledge of the subject (De Bra & Calvi, 1998; Hothi, Hall, & Sly, 2000) as well as a suggested set of the most relevant links to proceed further (Brusilovsky, Eklund, & Schwarz, 1998; Kavcic, 2004). An adaptive electronic encyclopedia will personalize the content of an article to augment the user's existing knowledge and interests (Bontcheva & Wilks, 2005; Milosavljevic, 1997). A museum guide will adapt the presentation about every visited object to the user's individual path through the museum (Oberlander et al., 1998; Stock et al., 2007). Adaptive hypermedia belongs to the class of user-adaptive systems (Schneider-Hufschmidt, KĂĽhme, & Malinowski, 1993). A distinctive feature of an adaptive system is an explicit user model that represents user knowledge, goals, and interests, as well as other features that enable the system to adapt to different users with their own specific set of goals. An adaptive system collects data for the user model from various sources that can include implicitly observing user interaction and explicitly requesting direct input from the user. The user model is applied to provide an adaptation effect, that is, tailor interaction to different users in the same context. In different kinds of adaptive systems, adaptation effects could vary greatly. In AH systems, it is limited to three major adaptation technologies: adaptive content selection, adaptive navigation support, and adaptive presentation. The first of these three technologies comes from the fields of adaptive information retrieval (IR) and intelligent tutoring systems (ITS). When the user searches for information, the system adaptively selects and prioritizes the most relevant items (Brajnik, Guida, & Tasso, 1987; Brusilovsky, 1992b)
    • …
    corecore