5,589 research outputs found

    Mobihealth: mobile health services based on body area networks

    Get PDF
    In this chapter we describe the concept of MobiHealth and the approach developed during the MobiHealth project (MobiHealth, 2002). The concept was to bring together the technologies of Body Area Networks (BANs), wireless broadband communications and wearable medical devices to provide mobile healthcare services for patients and health professionals. These technologies enable remote patient care services such as management of chronic conditions and detection of health emergencies. Because the patient is free to move anywhere whilst wearing the MobiHealth BAN, patient mobility is maximised. The vision is that patients can enjoy enhanced freedom and quality of life through avoidance or reduction of hospital stays. For the health services it means that pressure on overstretched hospital services can be alleviated

    Energy-aware peering routing protocol for indoor hospital body area network communication

    Get PDF
    The recent research in Body Area Networks (BAN) is focused on making its communication more reliable, energy efficient, secure, and to better utilize system resources. In this paper we propose a novel BAN network architecture for indoor hospital environments, and a new mechanism of peer discovery with routing table construction that helps to reduce network traffic load, energy consumption, and improves BAN reliability. We have performed extensive simulations in the Castalia simulation environment to show that our proposed protocol has better performance in terms of reduced BAN traffic load, increased number of successful packets received by nodes, reduced number of packets forwarded by intermediate nodes, and overall lower energy consumption compared to other protocols

    U-health expert system with statistical neural network

    Get PDF
    Ubiquitous Health(U-Health) system witch focuses on automated applications that can provide healthcare to human anywhere and anytime using wired and wireless mobile technologies is becoming increasingly important. This system consists of a network system to collect data and a sensor module which measures pulse, blood pressure, diabetes, blood sugar, body fat diet with management and measurement of stress etc, by both wired and wireless and further portable mobile connections. In this paper, we propose an expert system using back-propagation to support the diagnosis of citizens in U-Health system

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01

    A comprehensive survey of wireless body area networks on PHY, MAC, and network layers solutions

    Get PDF
    Recent advances in microelectronics and integrated circuits, system-on-chip design, wireless communication and intelligent low-power sensors have allowed the realization of a Wireless Body Area Network (WBAN). A WBAN is a collection of low-power, miniaturized, invasive/non-invasive lightweight wireless sensor nodes that monitor the human body functions and the surrounding environment. In addition, it supports a number of innovative and interesting applications such as ubiquitous healthcare, entertainment, interactive gaming, and military applications. In this paper, the fundamental mechanisms of WBAN including architecture and topology, wireless implant communication, low-power Medium Access Control (MAC) and routing protocols are reviewed. A comprehensive study of the proposed technologies for WBAN at Physical (PHY), MAC, and Network layers is presented and many useful solutions are discussed for each layer. Finally, numerous WBAN applications are highlighted

    Using wearable sensors for remote healthcare monitoring system

    Get PDF
    Recent technological advances in wireless communications and wireless sensor networks have enabled the design of low-cost, intelligent, tiny, and lightweight medical sensor nodes that can be strategically placed on human body, create a wireless body area network (WBAN) to monitor various physiological vital signs for a long period of time and providing real-time feedback to the user and medical staff. WBANs promise to re-volutionize health monitoring. In this paper, medical sensors were used to collect physiological data from patients and transmit it to Intelligent Personal digital Assistant (IPDA) using ZigBee/IEEE802.15.4 standard and to medical server using 3G communications. We introduced priority scheduling and data compression into the system to increase transmission rate of physiological critical signals which improve the bandwidth utilization. It also extends the life time of hand-held personal server by reducing power consumption during transmission
    • 

    corecore