10,394 research outputs found

    Aerospace Medicine and Biology. A continuing bibliography with indexes

    Get PDF
    This bibliography lists 244 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1981. Aerospace medicine and aerobiology topics are included. Listings for physiological factors, astronaut performance, control theory, artificial intelligence, and cybernetics are included

    RGB-D datasets using microsoft kinect or similar sensors: a survey

    Get PDF
    RGB-D data has turned out to be a very useful representation of an indoor scene for solving fundamental computer vision problems. It takes the advantages of the color image that provides appearance information of an object and also the depth image that is immune to the variations in color, illumination, rotation angle and scale. With the invention of the low-cost Microsoft Kinect sensor, which was initially used for gaming and later became a popular device for computer vision, high quality RGB-D data can be acquired easily. In recent years, more and more RGB-D image/video datasets dedicated to various applications have become available, which are of great importance to benchmark the state-of-the-art. In this paper, we systematically survey popular RGB-D datasets for different applications including object recognition, scene classification, hand gesture recognition, 3D-simultaneous localization and mapping, and pose estimation. We provide the insights into the characteristics of each important dataset, and compare the popularity and the difficulty of those datasets. Overall, the main goal of this survey is to give a comprehensive description about the available RGB-D datasets and thus to guide researchers in the selection of suitable datasets for evaluating their algorithms

    Removing Orbital Debris with Lasers

    Full text link
    Orbital debris in low Earth orbit (LEO) are now sufficiently dense that the use of LEO space is threatened by runaway collisional cascading. A problem predicted more than thirty years ago, the threat from debris larger than about 1 cm demands serious attention. A promising proposed solution uses a high power pulsed laser system on the Earth to make plasma jets on the objects, slowing them slightly, and causing them to re-enter and burn up in the atmosphere. In this paper, we reassess this approach in light of recent advances in low-cost, light-weight modular design for large mirrors, calculations of laser-induced orbit changes and in design of repetitive, multi-kilojoule lasers, that build on inertial fusion research. These advances now suggest that laser orbital debris removal (LODR) is the most cost-effective way to mitigate the debris problem. No other solutions have been proposed that address the whole problem of large and small debris. A LODR system will have multiple uses beyond debris removal. International cooperation will be essential for building and operating such a system.Comment: 37 pages, 15 figures, in preparation for submission to Advances in Space Researc

    Prohibited Volume Avoidance for Aircraft

    No full text
    This thesis describes the development of a pilot override control system that prevents aircraft entering critical regions of space, known as prohibited volumes. The aim is to prevent another 9/11 style terrorist attack, as well as act as a general safety system for transport aircraft. The thesis presents the design and implementation of three core modules in the system; the trajectory generation algorithm, the trigger mechanism for the pilot override and the trajectory following element. The trajectory generation algorithm uses a direct multiple shooting strategy to provide trajectories through online computation that avoid pre-defi ned prohibited volume exclusion regions, whilst accounting for the manoeuvring capabilities of the aircraft. The trigger mechanism incorporates the logic that decides the time at which it is suitable for the override to be activated, an important consideration for ensuring that the system is not overly restrictive for a pilot. A number of methods are introduced, and for safety purposes a composite trigger that incorporates di fferent strategies is recommended. Trajectory following is best achieved via a nonlinear guidance law. The guidance logic sends commands in pitch, roll and yaw to the control surfaces of the aircraft, in order to closely follow the generated avoidance trajectory. Testing and validation is performed using a full motion simulator, with volunteers flying a representative aircraft model and attempting to penetrate prohibited volumes. The proof-of-concept system is shown to work well, provided that extreme aircraft manoeuvres are prevented near the exclusion regions. These hard manoeuvring envelope constraints allow the trajectory following controllers to follow avoidance trajectories accurately from an initial state within the bounding set. In order to move the project closer to a commercial product, operator and regulator input is necessary, particularly due to the radical nature of the pilot override system

    Multi-Robot Systems: Challenges, Trends and Applications

    Get PDF
    This book is a printed edition of the Special Issue entitled “Multi-Robot Systems: Challenges, Trends, and Applications” that was published in Applied Sciences. This Special Issue collected seventeen high-quality papers that discuss the main challenges of multi-robot systems, present the trends to address these issues, and report various relevant applications. Some of the topics addressed by these papers are robot swarms, mission planning, robot teaming, machine learning, immersive technologies, search and rescue, and social robotics

    Collision avoidance effects on the mobility of a UAV swarm using chaotic ant colony with model predictive control.

    Get PDF
    The recent development of compact and economic small Unmanned Aerial Vehicles (UAVs) permits the development of new UAV swarm applications. In order to enhance the area coverage of such UAV swarms, a novel mobility model has been presented in previous work, combining an Ant Colony algorithm with chaotic dynamics (CACOC). This work is extending CACOC by a Collision Avoidance (CA) mechanism and testing its efficiency in terms of area coverage by the UAV swarm. For this purpose, CACOC is used to compute UAV target waypoints which are tracked by model predictively controlled UAVs. The UAVs are represented by realistic motion models within the virtual robot experimentation platform (V-Rep). This environment is used to evaluate the performance of the proposed CACOC with CA algorithm in an area exploration scenario with 3 UAVs. Finally, its performance is analyzed using metrics
    corecore