59,600 research outputs found

    Intelligent Systems in Context-Based Distributed Information Fusion

    Get PDF
    Research on Intelligent Systems and context-based information fusion has matured during the last decade and many effective applications of this technology are now deployed. Context-based information fusion provides large quantities of information obtained from network sensors with heterogeneous characteristics, that needs to be efficiently processed. This paper proposes an intelligent system aimed at processing context information in health care environments. The system monitors patients and maintains a permanent fix on their location within a given context. The system uses information provided by sensors distributed throughout the environment. The intelligent agents take the information they receive and fuse it to improve the decisions and actions involved in their processing. This paper describes the proposed approach, focusing on the solutions provided by the agents through the information flow for the system

    Organizations of Agents in Information Fusion Environments

    Get PDF
    Information fusion in a context-aware system is understood as a process that assembles assessments of the environment based on its goals. Advantages of intelligent approaches such as Multi-Agent Systems (MAS) and the use of Wireless Sensor Networks (WSN) within the information fusion process are emerging, especially in context-aware scenarios. However, it has become critical to propose improved and efficient ways to handle the enormous quantity of data provided by these approaches. Agents are a suitable option because they can represent autonomous entities by modeling their capabilities, expertise and intentions. In this sense, virtual organizations of agents are an interesting option/possibility because they can provide the necessary capacity to handle open and heterogeneous systems such as those normally found in the information fusion process. This paper presents a new framework that defines a method for creating a virtual organization of software and hardware agents. This approach facilitates the inclusion of context-aware capabilities when developing intelligent and adaptable systems, where functionalities can communicate in a distributed and collaborative way. Several tests have been performed to evaluate this framework and preliminary results and conclusions are presented

    Special Issue on International Journal of Imaging and Robotics

    Get PDF
    This paper presents a brief summary of the post-proceedings of the International Symposium on Distributed Computing and Artificial Intelligence (DCAI 2014) and the Workshop on Intelligent Systems for Context-based Information Fusion (ISCIF) held in Salamanca in June from 4th to 6th, 2014. This special issue presents a selection of the best papers selected from those that were accepted on the symposium focused on image processing and robotics

    Multi-Agent Information Fusion System to manage data from a WSN in a residential home

    Get PDF
    With the increase of intelligent systems based on Multi-Agent Systems (MAS) and the use of Wireless Sensor Networks (WSN) in context-aware scenarios, information fusion has become an essential part of this kind of systems where the information is distributed among nodes or agents. This paper presents a new MAS specially designed to manage data from WSNs, which was tested in a residential home for the elderly. The proposed MAS architecture is based on virtual organizations, and incorporates social behaviors to improve the information fusion processes. The data that the system manages and analyzes correspond to the actual data of the activities of a resident. Data is collected as the information event counts detected by the sensors in a specific time interval, typically one day. We have designed a system that improves the quality of life of dependant people, especially elderly, by fusioning data obtained by multiple sensors and information of their daily activities. The high development of systems that extract and store information make essential to improve the mechanisms to deal with the avalanche of context data. In our case, the MAS approach results appropriated because each agent can represent an autonomous entity with different capabilities and offering different services but collaborating among them. Several tests have been performed to evaluate this platform and preliminary results and the conclusions are presented in this paper

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Event Recognition Using Signal Spectrograms in Long Pulse Experiments

    Get PDF
    As discharge duration increases, real-time complex analysis of the signal becomes more important. In this context, data acquisition and processing systems must provide models for designing experiments which use event oriented plasma control. One example of advanced data analysis is signal classification. The off-line statistical analysis of a large number of discharges provides information to develop algorithms for the determination of the plasma parameters from measurements of magnetohydrodinamic waves, for example, to detect density fluctuations induced by the Alfvén cascades using morphological patterns. The need to apply different algorithms to the signals and to address different processing algorithms using the previous results necessitates the use of an event-based experiment. The Intelligent Test and Measurement System platform is an example of architecture designed to implement distributed data acquisition and real-time processing systems. The processing algorithm sequence is modeled using an event-based paradigm. The adaptive capacity of this model is based on the logic defined by the use of state machines in SCXML. The Intelligent Test and Measurement System platform mixes a local multiprocessing model with a distributed deployment of services based on Jini
    • 

    corecore