51,390 research outputs found

    Optimizing Fast Fourier Transform (FFT) Image Compression using Intelligent Water Drop (IWD) Algorithm

    Get PDF
    Digital image compression is the technique in digital image processing where special attention is provided in decreasing the number of bits required to represent a digital image. A wide range of techniques have been developed over the years, and novel approaches continue to emerge. This paper proposes a new technique for optimizing image compression using Fast Fourier Transform (FFT) and Intelligent Water Drop (IWD) algorithm. IWD-based FFT Compression is a emerging ethodology, and we expect compression findings to be much better than the methods currently being applied in the domain. This work aims to enhance the degree of compression of the image while maintaining the features that contribute most. It optimizes the FFT threshold values using swarm-based optimization technique (IWD) and compares the results in terms of Structural Similarity Index Measure (SSIM). The criterion of structural similarity of image quality is based on the premise that the human visual system is highly adapted to obtain structural information from the scene, so a measure of structural similarity provides a reasonable estimate of the perceived image quality

    Application of pixel segmentation to the low rate compression of complex SAR imagery

    Full text link
    This paper describes a technique to identify pixels within a subregion (chip) of a complex or detected SAR image which are to be losslessly compressed while the remainder of the image is subjected to a high compression ratio. This multi-modal compression is required for the intelligent low rate compression of SAR imagery, which addresses the problem of transmitting massive amounts of high resolution complex SAR data from a remote airborne sensor to a ground station for exploitation by an automatic target recognition (ATR) system, in a real time environment, over a narrow bandwidth. The ATR system results might then be presented to an image analyst who, using the contextual information from the SAR image, makes final target determination

    An Efficient Transport Protocol for delivery of Multimedia An Efficient Transport Protocol for delivery of Multimedia Content in Wireless Grids

    Get PDF
    A grid computing system is designed for solving complicated scientific and commercial problems effectively,whereas mobile computing is a traditional distributed system having computing capability with mobility and adopting wireless communications. Media and Entertainment fields can take advantage from both paradigms by applying its usage in gaming applications and multimedia data management. Multimedia data has to be stored and retrieved in an efficient and effective manner to put it in use. In this paper, we proposed an application layer protocol for delivery of multimedia data in wireless girds i.e. multimedia grid protocol (MMGP). To make streaming efficient a new video compression algorithm called dWave is designed and embedded in the proposed protocol. This protocol will provide faster, reliable access and render an imperceptible QoS in delivering multimedia in wireless grid environment and tackles the challenging issues such as i) intermittent connectivity, ii) device heterogeneity, iii) weak security and iv) device mobility.Comment: 20 pages, 15 figures, Peer Reviewed Journa

    Terrestrial applications: An intelligent Earth-sensing information system

    Get PDF
    For Abstract see A82-2214

    Low complexity object detection with background subtraction for intelligent remote monitoring

    Get PDF

    JPEG steganography: A performance evaluation of quantization tables

    Get PDF
    The two most important aspects of any image based steganographic system are the imperceptibility and the capacity of the stego image. This paper evaluates the performance and efficiency of using optimized quantization tables instead of default JPEG tables within JPEG steganography. We found that using optimized tables significantly improves the quality of stego-images. Moreover, we used this optimization strategy to generate a 16x16 quantization table to be used instead of that suggested. The quality of stego-images was greatly improved when these optimized tables were used. This led us to suggest a new hybrid steganographic method in order to increase the embedding capacity. This new method is based on both and Jpeg-Jsteg methods. In this method, for each 16x16 quantized DCT block, the least two significant bits (2-LSBs) of each middle frequency coefficient are modified to embed two secret bits. Additionally, the Jpeg-Jsteg embedding technique is used for the low frequency DCT coefficients without modifying the DC coefficient. Our experimental results show that the proposed approach can provide a higher information-hiding capacity than the other methods tested. Furthermore, the quality of the produced stego-images is better than that of other methods which use the default tables
    • …
    corecore