296 research outputs found

    Surveying Underwater Shipwrecks with Probabilistic Roadmaps

    Get PDF
    Almost two thirds of the Earth\u27s surface is covered in ocean, and yet, only about 5% of it is mapped. There are an unknown amount of sunken ships, planes, and other artifacts hidden below the sea. Extensive search via boat and a sonar tow fish following a standard lawnmower pattern is used to identify sites of interest. Then, if a site has been determined to potentially be historically significant, the most common next step is a survey by either a human dive team or remotely operated vehicle. These are time consuming, error prone, and potentially dangerous options, but autonomous underwater vehicles (AUVs) are a possible solution. This thesis introduces a system for automatically generating paths for AUVs to survey and map shipwrecks. Most AUVs include software to set a lawnmower path for a given region of ocean, and individualized paths can be set via specifying GPS encoded nodes for the AUV to pass through. This thesis presents an algorithm for generating an individualized path that permits the AUV, equipped with a camera to see all sides of a region of interest (i.e. a shipwreck). This allows the region of interest to be completely documented. Photogrammetry can then be used to reconstruct a three-dimensional model, but a path is needed to do so. Paths are generated by a probabilistic roadmap algorithm that uses a rapidly-exploring random tree to quickly cover the volume of exploration space and generate small maps with good coverage. The roadmap is constructed out of nodes, each having its own weight. The weight of a given node is calculated using an objective function which measures an approximate view coverage by casting rays from the virtual view and intersecting them with the region of interest. In addition, the weight of a node is increased if this node allows the AUV to see a new side of the region of interest. In each iteration of the algorithm, a node to expand off of is selected based off its location in space or its high weight, a new node with a given amount of freedom is generated, and then added to the roadmap. The algorithm has degrees of freedom in position, pitch, and yaw as well as the objective function to encourage the path to see all sides of the region of interest. Once all sides of the region of interest have been viewed, a path is determined to be complete. The algorithm was tested in a virtual world where the virtual camera acted as the AUV. All of the images collected from our automatically generated path were used to create 3D models and point clouds using photogrammetry. To measure the effectiveness of our paths versus the pre-packaged lawnmower paths, the 3D models and point clouds created from our algorithm were compared to those generated from running a standard lawnmower pattern. The paths generated by our algorithm captured images that could be used in a 3D reconstruction which were more detailed and showed better coverage of the region of interest than those from the lawnmower pattern

    A cooperative multi-robot team for the surveillance of shipwreck survivors at sea

    Get PDF
    The sea as a very extensive area, renders difficult a pre-emptive and long-lasting search for shipwreck survivors. The operational cost for deploying manned teams with such proactive strategy is high and, thus, these teams are only reactively deployed when a disaster like a shipwreck has been communicated. To reduce the involved financial costs, unmanned robotic systems could be used instead as background surveillance teams patrolling the seas. In this sense, a robotic team for search and rescue (SAR) operations at sea is presented in this work. Composed of an Unmanned Surface Vehicle (USV) piggybacking a watertight Unmanned Aerial Vehicle (UAV) with vertical take-off and landing capabilities, the proposed cooperative system is capable of search, track and provide basic life support while reporting the position of human survivors to better prepared manned rescue teams. The USV provides long-range transportation of the UAV and basic survival kits for victims. The UAV assures an augmented perception of the environment due to its high vantage point.info:eu-repo/semantics/acceptedVersio

    The effect of surface treatment on composite interface, tensile properties and water absorption of suger palm fiber/polypropylene composites

    Get PDF
    The rising concern towards environmental issues besides the requirement for more flexible polymer-based material has led to increasing of interest in studying about green composite. Sugar palm fiber (SPF) is a versatile fiber plant employed with wide range of application such as in automotive, packaging and buildings construction. This research was aimed to study the effect of surface treatment on composite interface, tensile properties and water absorption of sugar palm fiber/polypropylene (SPFPP) composite by using different surface treatments such as silane (Si), atmospheric glow discharge plasma (Agd) and maleic anhydride (Ma). Silane treatment was carried out by using immersion method, the Agd plasma was conducted using polymerization and lastly polypropylene grafted maleic anhydride by using melting approach. The SPFPP composite was prepared by using injection moulding with fiber content var­ied from 10-30wt%. The effect of interface enhancement on morphology, mechanical properties and water uptakes of SPFPP composites were then investigated by using FfIR, FESEM, tensile test and water absorption test. Overall, the outcome shows that aJl types of surface treatments had improved the interface of SPFPP composite, thus improving its tensile properties compared to the benchmark untreated SPFPP (Ut­SPFPP) composites and polypropylene. The 30wt% Ma-SPFPP composite shows the highest improvement in tensile properties with 58% and 27% increase in the respective Young's Modulus and tensile strength value compared to Ut-SPFPP composite, while 10wt% Ma-SPFPP composite shows the smallest reduction in elongation compared to Neat PP. On the other hand, the 30wt% Si-SPFPP composite shows the lowest water absorption with 20% reduction respective to Ut-SPFPP composite. In conclusion, the surface treatments have proven succesfull in enhancing the natural fiber-polymer in­terface and improve the tensile properties of SPFPP composite with Ma-SPFPP shows the highest improvement, foJlowed by Agd-SPFPP and Si-SPFPP composites

    The effect of surface treatment on composite interface, tensile properties and water absorption of suger palm fiber/polypropylene composites

    Get PDF
    The rising concern towards environmental issues besides the requirement for more flexible polymer-based material has led to increasing of interest in studying about green composite. Sugar palm fiber (SPF) is a versatile fiber plant employed with wide range of application such as in automotive, packaging and buildings construction. This research was aimed to study the effect of surface treatment on composite interface, tensile properties and water absorption of sugar palm fiber/polypropylene (SPFPP) composite by using different surface treatments such as silane (Si), atmospheric glow discharge plasma (Agd) and maleic anhydride (Ma). Silane treatment was carried out by using immersion method, the Agd plasma was conducted using polymerization and lastly polypropylene grafted maleic anhydride by using melting approach. The SPFPP composite was prepared by using injection moulding with fiber content var­ied from 10-30wt%. The effect of interface enhancement on morphology, mechanical properties and water uptakes of SPFPP composites were then investigated by using FfIR, FESEM, tensile test and water absorption test. Overall, the outcome shows that aJl types of surface treatments had improved the interface of SPFPP composite, thus improving its tensile properties compared to the benchmark untreated SPFPP (Ut­SPFPP) composites and polypropylene. The 30wt% Ma-SPFPP composite shows the highest improvement in tensile properties with 58% and 27% increase in the respective Young's Modulus and tensile strength value compared to Ut-SPFPP composite, while 10wt% Ma-SPFPP composite shows the smallest reduction in elongation compared to Neat PP. On the other hand, the 30wt% Si-SPFPP composite shows the lowest water absorption with 20% reduction respective to Ut-SPFPP composite. In conclusion, the surface treatments have proven succesfull in enhancing the natural fiber-polymer in­terface and improve the tensile properties of SPFPP composite with Ma-SPFPP shows the highest improvement, foJlowed by Agd-SPFPP and Si-SPFPP composites

    Autonomous Underwater Vehicles as Tools for Deep-Submergence Archaeology

    Get PDF
    Marine archaeology beyond the capabilities of scuba divers is a technologically enabled field. The tool suite includes ship-based systems such as towed side-scan sonars and remotely operated vehicles, and more recently free-swimming autonomous underwater vehicles (AUVs). Each of these platforms has various imaging and mapping capabilities appropriate for specific scales and tasks. Broadly speaking, AUVs are becoming effective tools for locating, identifying, and surveying archaeological sites. This paper discusses the role of AUVs in this suite of tools, outlines some specific design criteria necessary to maximize their utility in the field, and presents directions for future developments. Results are presented for a recent joint AUV–towed system survey and a demonstration of current mine-hunting technologies applied to archaeology
    • …
    corecore