37,302 research outputs found

    The intelligent room for elderly care

    Get PDF
    Daily life assistance for elderly is one of the most promising and interesting scenarios for advanced technologies in the present and near future. Improving the quality of life of elderly is also some of the first priorities in modern countries and societies where the percentage of elder people is rapidly increasing due mainly to great improvements in medicine during the last decades. In this paper, we present an overview of our informationally structured room that supports daily life activities of elderly. Our environment contains different distributed sensors including a floor sensing system and several intelligent cabinets. Sensor information is sent to a centralized management system which processes the data and makes it available to a service robot which assists the people in the room. One important restriction in our intelligent environment is to maintain a small number of sensors to avoid interfering with the daily activities of people and to reduce as much as possible the invasion of their privacy. In addition we discuss some experiments using our real environment and robot

    Adaptive shared control system

    Get PDF

    Tracing commodities in indoor environments for service robotics

    Get PDF
    Daily life assistance for elderly people is one of the most promising scenarios for service robots in the the near future. In particular, the go-and-fetch task will be one of the most demanding tasks in these cases. In this paper, we present an informationally structured room that supports a service robot in the task of daily object fetching. Our environment contains different distributed sensors including a floor sensing system and several intelligent cabinets. Sensor information is send to a centralized management system which process the data and make it available to a service robot which is assisting people in the room. We additionally present the first steps of an intelligent framework used to maintain information about locations of commodities in our informationally structured room. This information will be used by the service robot to find objects under people requests. One of the main goal of our intelligent environment is to maintain a small number of sensors to avoid interfering with the daily activity of people, and to reduce as much as possible invasion of their privacy. In order to compensate this limited available sensor information, our framework aims to exploit knowledge about people's activity and interaction with objects, to infer reliable information about the location of commodities. This paper presents simulated results that demonstrate the suitability of this framework to be applied to a service robotic environment equipped with limited sensors. In addition we discuss some preliminary experiments using our real environment and robot

    A bank of unscented Kalman filters for multimodal human perception with mobile service robots

    Get PDF
    A new generation of mobile service robots could be ready soon to operate in human environments if they can robustly estimate position and identity of surrounding people. Researchers in this field face a number of challenging problems, among which sensor uncertainties and real-time constraints. In this paper, we propose a novel and efficient solution for simultaneous tracking and recognition of people within the observation range of a mobile robot. Multisensor techniques for legs and face detection are fused in a robust probabilistic framework to height, clothes and face recognition algorithms. The system is based on an efficient bank of Unscented Kalman Filters that keeps a multi-hypothesis estimate of the person being tracked, including the case where the latter is unknown to the robot. Several experiments with real mobile robots are presented to validate the proposed approach. They show that our solutions can improve the robot's perception and recognition of humans, providing a useful contribution for the future application of service robotics

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications
    corecore