136 research outputs found

    Semi-automated techniques for the retrieval of dermatological condition in color skin images

    Get PDF
    Dermatologists base the diagnosis of skin disease on the visual assessment of the skin. This fact shows that correct diagnosis is highly dependent on the observer\u27s experience and on his or her visual perception. Moreover, the human vision system lacks accuracy, reproducibility, and quantification in the way it gathers information from an image. So, there is a great need for computer-aided diagnosis. We propose a content-based image retrieval (CBIR) system to aid in the diagnosis of skin disease. First, after examining the skin images, pre-processing will be performed. Second, we examine the visual features for skin disease classified in the database and select color, texture and shape for characterization of a certain skin disease. Third, feature extraction techniques for each visual feature are investigated respectively. Fourth, similarity measures based on the extracted features will be discussed. Last, after discussing single feature performance, a distance metric combination scheme will be explored. The experimental data set is divided into two parts: developmental data set used as an image library and an unlabeled independent test data set. Two sets of experiments are performed: the input image of the skin image retrieval algorithm is either from developmental data set or independent test data set. The results are top five candidates of the input query image, that is, five labeled images from image library. Results are laid out separately for developmental data set and independent test data set. Two evaluation systems, both the standard precision vs. recall method, and the self-developed scoring method are carried out. The evaluation results obtained by both methods are given for each class of disease. Among all visual features, we found the color feature played a dominating role in distinguishing different types of skin disease. Among all classes of images, the class with best feature consistency gained the best retrieval accuracy based on the evaluation result. For future research we recommend further work in image collection protocol, color balancing, combining the feature metrics, improving texture characterization and incorporating semantic assistance in the retrieved process

    Characterization of digital medical images utilizing support vector machines

    Get PDF
    BACKGROUND: In this paper we discuss an efficient methodology for the image analysis and characterization of digital images containing skin lesions using Support Vector Machines and present the results of a preliminary study. METHODS: The methodology is based on the support vector machines algorithm for data classification and it has been applied to the problem of the recognition of malignant melanoma versus dysplastic naevus. Border and colour based features were extracted from digital images of skin lesions acquired under reproducible conditions, using basic image processing techniques. Two alternative classification methods, the statistical discriminant analysis and the application of neural networks were also applied to the same problem and the results are compared. RESULTS: The SVM (Support Vector Machines) algorithm performed quite well achieving 94.1% correct classification, which is better than the performance of the other two classification methodologies. The method of discriminant analysis classified correctly 88% of cases (71% of Malignant Melanoma and 100% of Dysplastic Naevi), while the neural networks performed approximately the same. CONCLUSION: The use of a computer-based system, like the one described in this paper, is intended to avoid human subjectivity and to perform specific tasks according to a number of criteria. However the presence of an expert dermatologist is considered necessary for the overall visual assessment of the skin lesion and the final diagnosis

    Systematic literature review of dermoscopic pigmented skin lesions classification using convolutional neural network (CNN)

    Get PDF
    The occurrence of pigmented skin lesions (PSL), including melanoma, are rising, and early detection is crucial for reducing mortality. To assist Pigmented skin lesions, including melanoma, are rising, and early detection is crucial in reducing mortality. To aid dermatologists in early detection, computational techniques have been developed. This research conducted a systematic literature review (SLR) to identify research goals, datasets, methodologies, and performance evaluation methods used in categorizing dermoscopic lesions. This review focuses on using convolutional neural networks (CNNs) in analyzing PSL. Based on specific inclusion and exclusion criteria, the review included 54 primary studies published on Scopus and PubMed between 2018 and 2022. The results showed that ResNet and self-developed CNN were used in 22% of the studies, followed by Ensemble at 20% and DenseNet at 9%. Public datasets such as ISIC 2019 were predominantly used, and 85% of the classifiers used were softmax. The findings suggest that the input, architecture, and output/feature modifications can enhance the model's performance, although improving sensitivity in multiclass classification remains a challenge. While there is no specific model approach to solve the problem in this area, we recommend simultaneously modifying the three clusters to improve the model's performance

    Psoriasis Skin Disease Classification based on Clinical Images

    Get PDF
    Psoriasis is an autoimmune skin disorder that causes skin plaques to develop into red and scaly patches. It affects millions of people globally. Dermatologists currently employ visual and haptic methods to determine a medical issue's severity. Intelligent medical imaging-based diagnosis systems are now a possibility because of the relatively recent development of deep learning technologies for medical image processing. These systems can help a human expert make better decisions about a patient's health. Convolutional neural networks, or CNNs, on the other hand, have achieved imaging performance levels comparable to, if not better than, those of humans. In the paper, a Dermnet dataset is used. Image preprocessing, fuzzy c-mean-based segmentation, MobileNet-based feature extraction, and a support vector machine (SVM) classification are used for skin disease classification. Dermnet's dataset was investigated for images of skin conditions using three classes Psoriasis, Dermatofibroma, and Melanoma are studied. The performance metrics such as accuracy, precision-recall, and f1-score are evaluated and compared for three classes of skin diseases. Despite working with a smaller dataset, MobileNet with Support Vector Machine outperforms ResNet in terms of accuracy (99.12%), precision (98.65%), and recall (99.66%)

    Survey on Therapy Prediction using Deep Learning for Pores and Skin Diseases

    Get PDF
    Introduction: Prediction and detection of skin ailments have generally been a hard and important task for health care specialists.  In the cutting-edge situation majority of the pores and skin care practitioners are the uses of traditional techniques to diagnose the ailment which may also take a large amount of time. Skin Diseases are excessive troubles in recent times as it is a consider form of environmental factors, socioeconomic elements, loss of entire weight loss program, and so on. Identifying the particular skin disease by computer vision is introduced as a novel task. Based on skin or pore disease, certain therapy can be suggested. In proposed study there are different applications based on deep learning are studied with computer vision task for better performance of proposed application. Famous deep learning algorithms may include CNN (convolutional neural network) , RNN (Recurrent Neural network), etc. Objective: To diagnose skin disease with dermoscopic images automatically. Developing automated strategies to improve the accuracy of analysis for multiple psoriasis and skin diseases Methods: In existing techniques many machine learning models are used which is having high complexity and require more time for analysis. So, in this study different deep learning models are studied for understanding performance difference between different models. This paper is a comparative check about skin illnesses related to ordinary skin issues in addition to cosmetology. Image selection, segmentation of skin disease detection and classification are the important steps can be used for oily, dry, and ordinary pores. Result: The field of dermatology has seen promising results from studies on various Convolutional Neural Network (CNN) algorithms for classifying skin diseases based on clinical images. These studies have concentrated on utilizing the strength of deep learning and computer vision techniques to classify and diagnose different skin conditions using facial images precisely. Conclusion: A survey of numerous papers is achieved on basis of technologies used, outcomes with accuracy, moral behavior, and number of illnesses diagnosed, datasets. Different existing research methodologies are compared with present deep learning architectures for understanding superior performance of deep learning models. Using deep learning, we can predict pore and skin diseases. In proposed study, introduction to different algorithms of deep learning which are combined with computer vision tasks to find the skin disease and pore disease are studied. Therapy can be predicted based on type of skin or pore disease

    Towards an Effective Imaging-Based Decision Support System for Skin Cancer

    Get PDF
    The usage of expert systems to aid in medical decisions has been employed since 1980s in distinct ap plications. With the high demands of medical care and limited human resources, these technologies are required more than ever. Skin cancer has been one of the pathologies with higher growth, which suf fers from lack of dermatology experts in most of the affected geographical areas. A permanent record of examination that can be further analyzed are medical imaging modalities. Most of these modalities were also assessed along with machine learning classification methods. It is the aim of this research to provide background information about skin cancer types, medical imaging modalities, data mining and machine learning methods, and their application on skin cancer imaging, as well as the disclosure of a proposal of a multi-imaging modality decision support system for skin cancer diagnosis and treatment assessment based in the most recent available technology. This is expected to be a reference for further implementation of imaging-based clinical support systems.info:eu-repo/semantics/publishedVersio
    • …
    corecore