25 research outputs found

    Viewfinder: final activity report

    Get PDF
    The VIEW-FINDER project (2006-2009) is an 'Advanced Robotics' project that seeks to apply a semi-autonomous robotic system to inspect ground safety in the event of a fire. Its primary aim is to gather data (visual and chemical) in order to assist rescue personnel. A base station combines the gathered information with information retrieved from off-site sources. The project addresses key issues related to map building and reconstruction, interfacing local command information with external sources, human-robot interfaces and semi-autonomous robot navigation. The VIEW-FINDER system is a semi-autonomous; the individual robot-sensors operate autonomously within the limits of the task assigned to them, that is, they will autonomously navigate through and inspect an area. Human operators monitor their operations and send high level task requests as well as low level commands through the interface to any nodes in the entire system. The human interface has to ensure the human supervisor and human interveners are provided a reduced but good and relevant overview of the ground and the robots and human rescue workers therein

    A robot swarm assisting a human fire-fighter

    Get PDF
    Emergencies in industrial warehouses are a major concern for fire-fighters. The large dimensions, together with the development of dense smoke that drastically reduces visibility, represent major challenges. The GUARDIANS robot swarm is designed to assist fire-fighters in searching a large warehouse. In this paper we discuss the technology developed for a swarm of robots assisting fire-fighters. We explain the swarming algorithms that provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also the means to locate the robots and humans. Thus, the robot swarm is able to provide guidance information to the humans. Together with the fire-fighters we explored how the robot swarm should feed information back to the human fire-fighter. We have designed and experimented with interfaces for presenting swarm-based information to human beings

    GUARDIANS final report part 1 (draft): a robot swarm assisting a human fire fighter

    Get PDF
    Emergencies in industrial warehouses are a major concern for fire fighters. The large dimensions together with the development of dense smoke that drastically reduces visibility, represent major challenges. The Guardians robot swarm is designed to assist re ghters in searching a large warehouse. In this paper we discuss the technology developed for a swarm of robots assisting re ghters. We explain the swarming algorithms which provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also the means to locate the robots and humans. Thus the robot swarm is able to provide guidance information to the humans. Together with the fire fighters we explored how the robot swarm should feed information back to the human fire fighter. We have designed and experimented with interfaces for presenting swarm based information to human beings

    Digitalization of Aeronautic Painting Shop Floors for Improved Commissioning Activities

    Get PDF
    Industrial commissioning plays a critical role in ensuring the safe and efficient operation of facilities and minimizes downtime and maintenance costs over their lifetime. To extend and adjust commissioning capabilities, Virtual Commissioning uses digital models of devices and processes to verify, validate, and optimize code programming, and component selection. To perform the validation process, a simulation involving control devices and process digital twins is required, leading to inherent computational complexity. Distributed simulation approach allows for simulation of complex systems by breaking down a large simulation into smaller, manageable parts that can be run simultaneously on separate processors, while still preserving the overall behavior and interactions of the system being simulated. This paper presents a distributed Virtual Commissioning solution for a spray paint process presented in UAV painting shop floor. The methodology for developing the implementation is described in detail: greenfield scenario generation, automation process, software toolchain development, selection of communication protocols, re-use of digital twins for extended applications, and complexity analysis. A set of 3d scenarios is used to demonstrate the result’s performance

    Control of bipedal locomotion with a neural oscillator-based brain-computer interface

    Get PDF
    This study proposes a neural oscillator-based brain–computer interface (BCI) that controls a bipedal neuromusculoskeletal (NMS) model by inputting electroencephalogram (EEG) signals.In this BCI system, while the bipedal NMS system realizes bipedal locomotion through internal entrainment among neural oscillators and a musculoskeletal system, the locomotion of the system is controlled via external entrainment of the neural oscillators to the external input of EEG signals.As the first step in developing the neural oscillator-based BCI controlling a bipedal NMS model, exploratory numerical simulations were conducted to investigate the behavior of the proposed BCI when sinusoidal waves and alpha waves were inputted.The following tendencies were observed: (a) inputting sinusoidal waves with small amplitudes and high frequencies did not affect the natural walking behavior of the bipedal NMS model that was generated by including only offset values in the external input, (b) inputting sinusoidal waves with small amplitudes and low frequencies disturbed and decelerated the walking behavior, (c) inputting sinusoidal waves with large amplitudes accelerated the walking behavior, (d) inputting sinusoidal waves with large amplitudes and a particular frequency changed walking behavior to running behavior, (e) changing the external input of alpha waves between an eyes-open condition and an eyes-closed condition successfully changed the walking behavior.The eyes-open condition led to faster walking compared with the eyes-closed condition

    GUARDIANS final report

    Get PDF
    Emergencies in industrial warehouses are a major concern for firefghters. The large dimensions together with the development of dense smoke that drastically reduces visibility, represent major challenges. The Guardians robot swarm is designed to assist fire fighters in searching a large warehouse. In this report we discuss the technology developed for a swarm of robots searching and assisting fire fighters. We explain the swarming algorithms which provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also one of the means to locate the robots and humans. Thus the robot swarm is able to locate itself and provide guidance information to the humans. Together with the re ghters we explored how the robot swarm should feed information back to the human fire fighter. We have designed and experimented with interfaces for presenting swarm based information to human beings

    Motion planning of upper-limb exoskeleton robots : a review

    Get PDF
    ABSTRACT: Background: Motion planning is an important part of exoskeleton control that improves the wearer’s safety and comfort. However, its usage introduces the problem of trajectory planning. The objective of trajectory planning is to generate the reference input for the motion-control system. This review explores the methods of trajectory planning for exoskeleton control. In order to reduce the number of surveyed papers, this review focuses on the upper limbs, which require refined three-dimensional motion planning. Methods: A systematic search covering the last 20 years was conducted in Ei Compendex, Inspect-IET, Web of Science, PubMed, ProQuest, and Science-Direct. The search strategy was to use and combine terms “trajectory planning”, “upper limb”, and ”exoskeleton” as high-level keywords. “Trajectory planning” and “motion planning” were also combined with the following keywords: “rehabilitation”, “humanlike motion“, “upper extremity“, “inverse kinematic“, and “learning machine “. Results: A total of 67 relevant papers were discovered. Results were then classified into two main categories of methods to plan trajectory: (i) Approaches based on Cartesian motion planning, and inverse kinematics using polynomial-interpolation or optimization-based methods such as minimum-jerk, minimum-torque-change, and inertia-like models; and (ii) approaches based on “learning by demonstration” using machine-learning techniques such as supervised learning based on neural networks, and learning methods based on hidden Markov models, Gaussian mixture models, and dynamic motion primitives. Conclusions: Various methods have been proposed to plan the trajectories for upper-limb exoskeleton robots, but most of them plan the trajectory offline. The review approach is general and could be extended to lower limbs. Trajectory planning has the advantage of extending the applicability of therapy robots to home usage (assistive exoskeletons); it also makes it possible to mitigate the shortages of medical caregivers and therapists, and therapy costs. In this paper, we also discuss challenges associated with trajectory planning: kinematic redundancy and incompatibility, and the trajectory-optimization problem. Commonly, methods based on the computation of swivel angles and other methods rely on the relationship (e.g., coordinated or synergistic) between the degrees of freedom used to resolve kinematic redundancy for exoskeletons. Moreover, two general solutions, namely, the self-tracing configuration of the joint axis and the alignment-free configuration of the joint axis, which add the appropriate number of extra degrees of freedom to the mechanism, were employed to improve the kinematic incompatibility between human and exoskeleton. Future work will focus on online trajectory planning and optimal control. This will be done because very few online methods were found in the scope of this study

    Activity Report: Automatic Control 2009

    Get PDF

    An augmented reality interface for multi-robot tele-operation and control

    Get PDF
    This thesis presents a seamlessly controlled human multi-robot system comprised of ground and aerial robots of semi-autonomous nature for source localization tasks. The system combines augmented reality interfaces capabilities with human supervisor\u27s ability to control multiple robots. It used advanced path planning algorithms to ensure obstacles are avoided and that the operators are free for higher-level tasks. A sensor data fused AR view is displayed which helped the users pin point source information or help the operator with the goals of the mission. The paper studies a preliminary Human Factors evaluation of this system in which several interface conditions are tested for source detection tasks

    Challenges and Barriers of Wireless Charging Technologies for Electric Vehicles

    Get PDF
    Electric vehicles could be a significant aid in lowering greenhouse gas emissions. Even though extensive study has been done on the features and traits of electric vehicles and the nature of their charging infrastructure, network modeling for electric vehicle manufacturing has been limited and unchanging. The necessity of wireless electric vehicle charging, based on magnetic resonance coupling, drove the primary aims for this review work. Herein, we examined the basic theoretical framework for wireless power transmission systems for EV charging and performed a software-in-the-loop analysis, in addition to carrying out a performance analysis of an EV charging system based on magnetic resonance. This study also covered power pad designs and created workable remedies for the following issues: (i) how power pad positioning affected the function of wireless charging systems and (ii) how to develop strategies to keep power efficiency at its highest level. Moreover, safety features of wireless charging systems, owing to interruption from foreign objects and/or living objects, were analyzed, and solutions were proposed to ensure such systems would operate as safely and optimally as possible
    corecore