1,049 research outputs found

    Reliable communication stack for flexible probe vehicle data collection in vehicular ad hoc networks

    Get PDF

    FAA/NASA Joint University Program for Air Transportation Research, 1992-1993

    Get PDF
    The research conducted during the academic year 1992-1993 under the FAA/NASA sponsored Joint University Program for Air Transportation Research is summarized. The year end review was held at Ohio University, Athens, Ohio, 17-18 June 1993. The Joint University Program is a coordinated set of three grants sponsored by the Federal Aviation Administration and NASA Langley Research Center, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and annotated bibliographies are presented for research topics, which include navigation, guidance, and control theory and practice, aircraft performance, human factors and air traffic management. An overview of the year's activities for each university is also presented

    Development of a Random Time-Frequency Access Protocol for M2M Communication

    Get PDF
    This thesis focuses on the design and development of the random time-frequency access protocol in Machine-to-Machine (M2M) communication systems and covers different aspects of the data collision problem in these systems. The randomisation algorithm, used to access channels in the frequency domain, represents the key factor that affects data collisions. This thesis presents a new randomisation algorithm for the channel selection process for M2M technologies. The new algorithm is based on a uniform randomisation distribution and is called the Uniform Randomisation Channel Selection Technique (URCST). This new channel selection algorithm improves system performance and provides a low probability of collision with minimum complexity, power consumption, and hardware resources. Also, URCST is a general randomisation technique which can be utilised by different M2M technologies. The analysis presented in this research confirms that using URCST improves system performance for different M2M technologies, such as Weightless-N and Sigfox, with a massive number of devices. The thesis also provides a rigorous and flexible mathematical model for the random time-frequency access protocol which can precisely describe the performance of different M2M technologies. This model covers various scenarios with multiple groups of devices that employ different transmission characteristics like the number of connected devices, the number of message copies, the number of channels, the payload size, and transmission time. In addition, new and robust simulation testbeds have been built and developed in this research to evaluate the performance of different M2M technologies that utilise the random time-frequency access protocol. These testbeds cover the channel histogram, the probability of collisions, and the mathematical model. The testbeds were designed to support the multiple message copies approach with various groups of devices that are connected to the same base station and employ different transmission characteristics. Utilising the newly developed channel selection algorithm, mathematical model, and testbeds, the research offers a detailed and thorough analysis of the performance of Weightless-N and Sigfox in terms of the message lost ratio (MLR) and power consumption. The analysis shows some useful insights into the performance of M2M systems. For instance, while using multiple message copies improves the system performance, it might degrade the reliability of the system as the number of devices increases beyond a specific limit. Therefore, increasing the number of message copies can be disadvantageous to M2M communication performance

    Using a Multiobjective Approach to Balance Mission and Network Goals within a Delay Tolerant Network Topology

    Get PDF
    This thesis investigates how to incorporate aspects of an Air Tasking Order (ATO), a Communications Tasking Order (CTO), and a Network Tasking Order (NTO) within a cognitive network framework. This was done in an effort to aid the commander and or network operator by providing automation for battlespace management to improve response time and potential inconsistent problem resolution. In particular, autonomous weapon systems such as unmanned aerial vehicles (UAVs) were the focus of this research This work implemented a simple cognitive process by incorporating aspects of behavior based robotic control principles to solve the multi-objective optimization problem of balancing both network and mission goals. The cognitive process consisted of both a multi-move look ahead component, in which the future outcomes of decisions were estimated, and a subsumption decision making architecture in which these decision-outcome pairs were selected so they co-optimized the dual goals. This was tested within a novel Air force mission scenario consisting of a UAV surveillance mission within a delay tolerant network (DTN) topology. This scenario used a team of small scale UAVs (operating as a team but each running the cognitive process independently) to balance the mission goal of maintaining maximum overall UAV time-on-target and the network goal of minimizing the packet end-to-end delays experienced within the DTN. The testing was accomplished within a MATLAB discrete event simulation. The results indicated that this proposed approach could successfully simultaneously improve both goals as the network goal improved 52% and the mission goal improved by approximately 6%

    DESIGN OF EFFICIENT IN-NETWORK DATA PROCESSING AND DISSEMINATION FOR VANETS

    Get PDF
    By providing vehicle-to-vehicle and vehicle-to-infrastructure wireless communications, vehicular ad hoc networks (VANETs), also known as the “networks on wheels”, can greatly enhance traffic safety, traffic efficiency and driving experience for intelligent transportation system (ITS). However, the unique features of VANETs, such as high mobility and uneven distribution of vehicular nodes, impose critical challenges of high efficiency and reliability for the implementation of VANETs. This dissertation is motivated by the great application potentials of VANETs in the design of efficient in-network data processing and dissemination. Considering the significance of message aggregation, data dissemination and data collection, this dissertation research targets at enhancing the traffic safety and traffic efficiency, as well as developing novel commercial applications, based on VANETs, following four aspects: 1) accurate and efficient message aggregation to detect on-road safety relevant events, 2) reliable data dissemination to reliably notify remote vehicles, 3) efficient and reliable spatial data collection from vehicular sensors, and 4) novel promising applications to exploit the commercial potentials of VANETs. Specifically, to enable cooperative detection of safety relevant events on the roads, the structure-less message aggregation (SLMA) scheme is proposed to improve communication efficiency and message accuracy. The scheme of relative position based message dissemination (RPB-MD) is proposed to reliably and efficiently disseminate messages to all intended vehicles in the zone-of-relevance in varying traffic density. Due to numerous vehicular sensor data available based on VANETs, the scheme of compressive sampling based data collection (CS-DC) is proposed to efficiently collect the spatial relevance data in a large scale, especially in the dense traffic. In addition, with novel and efficient solutions proposed for the application specific issues of data dissemination and data collection, several appealing value-added applications for VANETs are developed to exploit the commercial potentials of VANETs, namely general purpose automatic survey (GPAS), VANET-based ambient ad dissemination (VAAD) and VANET based vehicle performance monitoring and analysis (VehicleView). Thus, by improving the efficiency and reliability in in-network data processing and dissemination, including message aggregation, data dissemination and data collection, together with the development of novel promising applications, this dissertation will help push VANETs further to the stage of massive deployment

    Energy Efficient Cooperative Mobile Sensor Network

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    ACADEMIC HANDBOOK (UNDERGRADUATE) COLLEGE OF ENGINEERING (CoE)

    Get PDF

    Link Delay Inference in ANA Network

    Get PDF
    Estimating quality of service (QoS) parameters such as link delay distribution from the end-to-end delay of a multicast tree topology in network tomography cannot be achieved without multicast probing techniques or designing unicast probing packets that mimic the characteristics of multicast probing packets. Active probing is gradually giving way to passive measurement techniques. With the emergence of next generation networks such as Autonomic Network Architecture (ANA) network, which do not support active probing, a new way of thinking is required to provide network tomography support for such networks. This thesis is about investigating the possible solution to such problem in network tomography. Two approaches, queue model and adaptive learning model were implemented to minimized the uncertainty in the end-to-end delay measurements from passive data source so that we could obtain end-toend delay measurements that exhibit the characteristics of unicast or multicast probing packets. The result shows that the adaptive learning model performs better than the queue model. In spite of its good performance against the queue model, it fails to outperform the unicast model. Overall, the correlation between the adaptive learning model and multicast probing model is quite weak when the traffic intensity is low and strong when the traffic intensity is high. The adaptive model may be susceptible to low traffic. In general, this thesis is a paradigm shift from the investigation of ”deconvolution” algorithms that uncover link delay distributions to how to estimate link delay distributions without active probing.Master i nettverks- og systemadministrasjo

    Efficient channel allocation and medium access organization algorithms for vehicular networking

    Get PDF
    Due to the limited bandwidth available for Vehicular Ad-hoc Networks (VANETs), organizing the wireless channel access to efficiently use the bandwidth is one of the main challenges in VANET. In this dissertation, we focus on channel allocation and media access organization for Vehicle-to-Roadside Units (V2R) and Vehicle-to-Vehicle (V2V) communications. An efficient channel allocation algorithm for Roadside Unit (RSU) access is proposed. The goal of the algorithm is to increase system throughput by admitting more tasks (vehicles) and at the same time reduce the risk of the admitted tasks. The algorithm admits the new requests only when their requirements can be fulfilled and all in-session tasks\u27 requirements are also guaranteed. The algorithm calculates the expected task finish time for the tasks, but allocates a virtual transmission plan for the tasks as they progress toward the edges of the RSU range. For V2V mode, we propose an efficient medium access organization method based on VANETs\u27 clustering schemes. In order to make this method efficient in rapid topology change environment like VANET, it\u27s important to make the network topology less dynamic by forming local strongly connected clustering structure, which leads to a stable network topology on the global scale. We propose an efficient cluster formation algorithm that takes vehicles\u27 mobility into account for cluster formation. The results of the proposed methods show that the wireless channel utilization and the network stability are significantly improved compared to the existing methods
    corecore