824 research outputs found

    Modeling, Simulation and Emulation of Intelligent Domotic Environments

    Get PDF
    Intelligent Domotic Environments are a promising approach, based on semantic models and commercially off-the-shelf domotic technologies, to realize new intelligent buildings, but such complexity requires innovative design methodologies and tools for ensuring correctness. Suitable simulation and emulation approaches and tools must be adopted to allow designers to experiment with their ideas and to incrementally verify designed policies in a scenario where the environment is partly emulated and partly composed of real devices. This paper describes a framework, which exploits UML2.0 state diagrams for automatic generation of device simulators from ontology-based descriptions of domotic environments. The DogSim simulator may simulate a complete building automation system in software, or may be integrated in the Dog Gateway, allowing partial simulation of virtual devices alongside with real devices. Experiments on a real home show that the approach is feasible and can easily address both simulation and emulation requirement

    The OCarePlatform : a context-aware system to support independent living

    Get PDF
    Background: Currently, healthcare services, such as institutional care facilities, are burdened with an increasing number of elderly people and individuals with chronic illnesses and a decreasing number of competent caregivers. Objectives: To relieve the burden on healthcare services, independent living at home could be facilitated, by offering individuals and their (in)formal caregivers support in their daily care and needs. With the rise of pervasive healthcare, new information technology solutions can assist elderly people ("residents") and their caregivers to allow residents to live independently for as long as possible. Methods: To this end, the OCarePlatform system was designed. This semantic, data-driven and cloud based back-end system facilitates independent living by offering information and knowledge-based services to the resident and his/her (in)formal caregivers. Data and context information are gathered to realize context-aware and personalized services and to support residents in meeting their daily needs. This body of data, originating from heterogeneous data and information sources, is sent to personalized services, where is fused, thus creating an overview of the resident's current situation. Results: The architecture of the OCarePlatform is proposed, which is based on a service-oriented approach, together with its different components and their interactions. The implementation details are presented, together with a running example. A scalability and performance study of the OCarePlatform was performed. The results indicate that the OCarePlatform is able to support a realistic working environment and respond to a trigger in less than 5 seconds. The system is highly dependent on the allocated memory. Conclusion: The data-driven character of the OCarePlatform facilitates easy plug-in of new functionality, enabling the design of personalized, context-aware services. The OCarePlatform leads to better support for elderly people and individuals with chronic illnesses, who live independently. (C) 2016 Elsevier Ireland Ltd. All rights reserved

    Sharing Human-Generated Observations by Integrating HMI and the Semantic Sensor Web

    Get PDF
    Current “Internet of Things” concepts point to a future where connected objects gather meaningful information about their environment and share it with other objects and people. In particular, objects embedding Human Machine Interaction (HMI), such as mobile devices and, increasingly, connected vehicles, home appliances, urban interactive infrastructures, etc., may not only be conceived as sources of sensor information, but, through interaction with their users, they can also produce highly valuable context-aware human-generated observations. We believe that the great promise offered by combining and sharing all of the different sources of information available can be realized through the integration of HMI and Semantic Sensor Web technologies. This paper presents a technological framework that harmonizes two of the most influential HMI and Sensor Web initiatives: the W3C’s Multimodal Architecture and Interfaces (MMI) and the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) with its semantic extension, respectively. Although the proposed framework is general enough to be applied in a variety of connected objects integrating HMI, a particular development is presented for a connected car scenario where drivers’ observations about the traffic or their environment are shared across the Semantic Sensor Web. For implementation and evaluation purposes an on-board OSGi (Open Services Gateway Initiative) architecture was built, integrating several available HMI, Sensor Web and Semantic Web technologies. A technical performance test and a conceptual validation of the scenario with potential users are reported, with results suggesting the approach is soun

    A Software Suite for the Control and the Monitoring of Adaptive Robotic Ecologies

    Get PDF
    Adaptive robotic ecologies are networks of heterogeneous robotic devices (sensors, actuators, automated appliances) pervasively embedded in everyday environments, where they learn to cooperate towards the achievement of complex tasks. While their flexibility makes them an increasingly popular way to improve a system’s reliability, scalability, robustness and autonomy, their effective realisation demands integrated control and software solutions for the specification, integration and management of their highly heterogeneous and computational constrained components. In this extended abstract we briefly illustrate the characteristic requirements dictated by robotic ecologies, discuss our experience in developing adaptive robotic ecologies, and provide an overview of the specific solutions developed as part of the EU FP7 RUBICON Project

    NLSC: Unrestricted Natural Language-based Service Composition through Sentence Embeddings

    Full text link
    Current approaches for service composition (assemblies of atomic services) require developers to use: (a) domain-specific semantics to formalize services that restrict the vocabulary for their descriptions, and (b) translation mechanisms for service retrieval to convert unstructured user requests to strongly-typed semantic representations. In our work, we argue that effort to developing service descriptions, request translations, and matching mechanisms could be reduced using unrestricted natural language; allowing both: (1) end-users to intuitively express their needs using natural language, and (2) service developers to develop services without relying on syntactic/semantic description languages. Although there are some natural language-based service composition approaches, they restrict service retrieval to syntactic/semantic matching. With recent developments in Machine learning and Natural Language Processing, we motivate the use of Sentence Embeddings by leveraging richer semantic representations of sentences for service description, matching and retrieval. Experimental results show that service composition development effort may be reduced by more than 44\% while keeping a high precision/recall when matching high-level user requests with low-level service method invocations.Comment: This paper will appear on SCC'19 (IEEE International Conference on Services Computing) on July 1

    Enabling Machine Understandable Exchange of Energy Consumption Information in Intelligent Domotic Environments

    Get PDF
    In the 21st century, all the major countries around the world are coming together to reduce the impact of energy generation and consumption on the global environment. Energy conservation and its efficient usage has become a top agenda on the desks of many governments. In the last decade, the drive to make homes automated and to deliver a better assisted living picked pace and the research into home automation systems accelerated, usually based on a centralized residential gateway. However most devised solutions fail to provide users with information about power consumption of different house appliances. The ability to collect power consumption information can lead us to have a more energy efficient society. The goal addressed in this paper is to enable residential gateways to provide the energy consumption information, in a machine understandable format, to support third party applications and services. To reach this goal, we propose a Semantic Energy Information Publishing Framework. The proposed framework publishes, for different appliances in the house, their power consumption information and other properties, in a machine understandable format. Appliance properties are exposed according to the existing semantic modeling supported by residential gateways, while instantaneous power consumption is modeled through a new modular Energy Profile ontolog

    Service-Oriented Device Integration for Ubiquitous Ambient Assisted Living Environments

    Get PDF
    As a result of the increment of population in countries of Europe, a lot of efforts from European Authorities are coming from. In our research we want to bring forward a suite of developments related to build a ubiquitous AAL (Ambient Assisted Living) environment. We consider that recent approaches are based on ad-hoc technologies so its application is in this context isolated just in one domain of application. Our approach addresses to a reliable services platform for heterogeneous devices integration. On this basis we want to consider as well, the underlying benefits that a Service-oriented platform is giving to us in our Ambient Assisted Living Applications.Ministerio de Educación y Ciencia TSI2006-13390-C02-02Junta de Andalucía TIC-2141Ministerio de Industria, Turismo y Comercio TSI-020400-2008-11

    A Semantics-Rich Information Technology Architecture for Smart Buildings

    Get PDF
    The design of smart homes, buildings and environments currently suffers from a low maturity of available methodologies and tools. Technologies, devices and protocols strongly bias the design process towards vertical integration, and more flexible solutions based on separation of design concerns are seldom applied. As a result, the current landscape of smart environments is mostly populated by defectively designed solutions where application requirements (e.g., end-user functionality) are too often mixed and intertwined with technical requirements (e.g., managing the network of devices). A mature and effective design process must, instead, rely on a clear separation between the application layer and the underlying enabling technologies, to enable effective design reuse. The role of smart gateways is to enable this separation of concerns and to provide an abstracted view of available automation technology to higher software layers. This paper presents a blueprint for the information technology (IT) architecture of smart buildings that builds on top of established software engineering practices, such as model-driven development and semantic representation, and that avoids many pitfalls inherent in legacy approaches. The paper will also present a representative use case where the approach has been applied and the corresponding modeling and software tools
    corecore