13,441 research outputs found

    Towards Parallel Programming Models for Predictability

    Get PDF
    Future embedded systems for performance-demanding applications will be massively parallel. High performance tasks will be parallel programs, running on several cores, rather than single threads running on single cores. For hard real-time applications, WCETs for such tasks must be bounded. Low-level parallel programming models, based on concurrent threads, are notoriously hard to use due to their inherent nondeterminism. Therefore the parallel processing community has long considered high-level parallel programming models, which restrict the low-level models to regain determinism. In this position paper we argue that such parallel programming models are beneficial also for WCET analysis of parallel programs. We review some proposed models, and discuss their influence on timing predictability. In particular we identify data parallel programming as a suitable paradigm as it is deterministic and allows current methods for WCET analysis to be extended to parallel code. GPUs are increasingly used for high performance applications: we discuss a current GPU architecture, and we argue that it offers a parallel platform for compute-intensive applications for which it seems possible to construct precise timing models. Thus, a promising route for the future is to develop WCET analyses for data-parallel software running on GPUs

    Fast, Interactive Worst-Case Execution Time Analysis With Back-Annotation

    Get PDF
    Abstract—For hard real-time systems, static code analysis is needed to derive a safe bound on the worst-case execution time (WCET). Virtually all prior work has focused on the accuracy of WCET analysis without regard to the speed of analysis. The resulting algorithms are often too slow to be integrated into the development cycle, requiring WCET analysis to be postponed until a final verification phase. In this paper we propose interactive WCET analysis as a new method to provide near-instantaneous WCET feedback to the developer during software programming. We show that interactive WCET analysis is feasible using tree-based WCET calculation. The feedback is realized with a plugin for the Java editor jEdit, where the WCET values are back-annotated to the Java source at the statement level. Comparison of this treebased approach with the implicit path enumeration technique (IPET) shows that tree-based analysis scales better with respect to program size and gives similar WCET values. Index Terms—Real time systems, performance analysis, software performance, software reliability, software algorithms, safety I

    A Domain-Specific Language and Editor for Parallel Particle Methods

    Full text link
    Domain-specific languages (DSLs) are of increasing importance in scientific high-performance computing to reduce development costs, raise the level of abstraction and, thus, ease scientific programming. However, designing and implementing DSLs is not an easy task, as it requires knowledge of the application domain and experience in language engineering and compilers. Consequently, many DSLs follow a weak approach using macros or text generators, which lack many of the features that make a DSL a comfortable for programmers. Some of these features---e.g., syntax highlighting, type inference, error reporting, and code completion---are easily provided by language workbenches, which combine language engineering techniques and tools in a common ecosystem. In this paper, we present the Parallel Particle-Mesh Environment (PPME), a DSL and development environment for numerical simulations based on particle methods and hybrid particle-mesh methods. PPME uses the meta programming system (MPS), a projectional language workbench. PPME is the successor of the Parallel Particle-Mesh Language (PPML), a Fortran-based DSL that used conventional implementation strategies. We analyze and compare both languages and demonstrate how the programmer's experience can be improved using static analyses and projectional editing. Furthermore, we present an explicit domain model for particle abstractions and the first formal type system for particle methods.Comment: Submitted to ACM Transactions on Mathematical Software on Dec. 25, 201

    Features of Programming Languages and Algorithm for Calculating the Effectiveness

    Get PDF
    The article provides information on the basics of software engineering, programming and programming languages. Software engineering is also defined as a systematic approach to the analysis, scheduling, design, evaluation, implementation, testing, service and software upgrading. Thinking and the peculiarities of the algorithmic peculiarities are clarified, and the mechanism of their use in programming is explained. Programming theory incorporates the formal methods based on software specifications and the method based on the mathematical subjects and provides program development using mathematical symbols and ensures the accuracy to obtain the required results on the computer. The principles of using graphs in programming and dynamic programming are analyzed. The concepts of programming technology and programming languages ​​are described. The criteria for evaluating the programming languages ​​are identified and an algorithm is developed for calculating the effectiveness

    Working Notes from the 1992 AAAI Workshop on Automating Software Design. Theme: Domain Specific Software Design

    Get PDF
    The goal of this workshop is to identify different architectural approaches to building domain-specific software design systems and to explore issues unique to domain-specific (vs. general-purpose) software design. Some general issues that cut across the particular software design domain include: (1) knowledge representation, acquisition, and maintenance; (2) specialized software design techniques; and (3) user interaction and user interface
    • …
    corecore