247 research outputs found

    Accurate leakage current models for MOSFET nanoscale devices

    Get PDF
    This paper underlines a closed forms of MOSFET transistor’sleakage current mechanisms inthe sub 100nmparadigm.The incorporation of draininduced barrier lowering (DIBL), Gate Induced Drain Lowering (GIDL) and body effect (m) on the sub-threshold leakage (Isub) wasinvestigated in detail. The Band-To-Band Tunneling (IBTBT) due to the source and Drain PN reverse junction were also modeled witha close and accurate model using a rectangularapproximation method (RJA). The three types of gate leakage (IG) were also modeled and analyzed for parasitic (IGO), inversion channel (IGC), and gate substrate (IGB).In addition, the leakage resources due to the aggressive reduction in the oxide thickness

    Solid State Circuits Technologies

    Get PDF
    The evolution of solid-state circuit technology has a long history within a relatively short period of time. This technology has lead to the modern information society that connects us and tools, a large market, and many types of products and applications. The solid-state circuit technology continuously evolves via breakthroughs and improvements every year. This book is devoted to review and present novel approaches for some of the main issues involved in this exciting and vigorous technology. The book is composed of 22 chapters, written by authors coming from 30 different institutions located in 12 different countries throughout the Americas, Asia and Europe. Thus, reflecting the wide international contribution to the book. The broad range of subjects presented in the book offers a general overview of the main issues in modern solid-state circuit technology. Furthermore, the book offers an in depth analysis on specific subjects for specialists. We believe the book is of great scientific and educational value for many readers. I am profoundly indebted to the support provided by all of those involved in the work. First and foremost I would like to acknowledge and thank the authors who worked hard and generously agreed to share their results and knowledge. Second I would like to express my gratitude to the Intech team that invited me to edit the book and give me their full support and a fruitful experience while working together to combine this book

    Miniaturized Transistors

    Get PDF
    What is the future of CMOS? Sustaining increased transistor densities along the path of Moore's Law has become increasingly challenging with limited power budgets, interconnect bandwidths, and fabrication capabilities. In the last decade alone, transistors have undergone significant design makeovers; from planar transistors of ten years ago, technological advancements have accelerated to today's FinFETs, which hardly resemble their bulky ancestors. FinFETs could potentially take us to the 5-nm node, but what comes after it? From gate-all-around devices to single electron transistors and two-dimensional semiconductors, a torrent of research is being carried out in order to design the next transistor generation, engineer the optimal materials, improve the fabrication technology, and properly model future devices. We invite insight from investigators and scientists in the field to showcase their work in this Special Issue with research papers, short communications, and review articles that focus on trends in micro- and nanotechnology from fundamental research to applications

    Miniaturized Transistors, Volume II

    Get PDF
    In this book, we aim to address the ever-advancing progress in microelectronic device scaling. Complementary Metal-Oxide-Semiconductor (CMOS) devices continue to endure miniaturization, irrespective of the seeming physical limitations, helped by advancing fabrication techniques. We observe that miniaturization does not always refer to the latest technology node for digital transistors. Rather, by applying novel materials and device geometries, a significant reduction in the size of microelectronic devices for a broad set of applications can be achieved. The achievements made in the scaling of devices for applications beyond digital logic (e.g., high power, optoelectronics, and sensors) are taking the forefront in microelectronic miniaturization. Furthermore, all these achievements are assisted by improvements in the simulation and modeling of the involved materials and device structures. In particular, process and device technology computer-aided design (TCAD) has become indispensable in the design cycle of novel devices and technologies. It is our sincere hope that the results provided in this Special Issue prove useful to scientists and engineers who find themselves at the forefront of this rapidly evolving and broadening field. Now, more than ever, it is essential to look for solutions to find the next disrupting technologies which will allow for transistor miniaturization well beyond silicon’s physical limits and the current state-of-the-art. This requires a broad attack, including studies of novel and innovative designs as well as emerging materials which are becoming more application-specific than ever before

    Electrical and temperature characterisation of silicon and germanium nanowire transistors based on channel dimensions

    Get PDF
    Amongst various sensing and monitoring technologies, sensors based on field effect transistors (FETs) have attracted considerable attention from both the industry and academia. Owing to their unique characteristics such as their small size, lightweight, low cost, flexibility, fast response, stability and ability for further downscaling, nanowire transistors (NWTs) can serve as ideal nanosensors and successors to FET-based nanoscale devices. However, as the dimensions (length, diameter and oxide thickness) of NWT channels are shrinking down, the electrical and temperature characteristics of NWTs are affected, thereby degrading the transistor performance. Although the applications of NWTs as biological and/or chemical sensors have been extensively explored in the literature, the use of these transistors as temperature sensors has been largely ignored. Consequently, this research investigates the impact of the cross-sectional dimensions of silicon nanowire transistors (SiNWTs) and germanium nanowire transistors (GeNWTs) on their electrical and temperature characteristics. Accordingly, evaluate and compare the performance of the considered nanowires and their potential applicability as temperature nanosensors for continuous temperature monitoring with good detection capability, high flexibility and low cost. A comprehensive simulation-based comparative study is performed by using six variable parameters, namely, gate length (Lg), channel diameter (Dch), oxide thickness (Tox), ambient temperature (T), gate bias voltage (Vg) and drain bias voltage (VDD). The impact of changes in these parameters on the electrical and temperature characteristics of SiNWTs and GeNWTs is then evaluated. The well-known MuGFET simulation tool for nanoscale multi-gate FET structure is used for the experimental simulations. A wide range of variable parameters are simulated in three simulation-based case studies, which cover 21 operating voltages and an ambient temperature increasing from 225 K to 450 K by a step of 25 K. The first case study considers the variation in gate length (Lg = 25, 45, 65, 85 and 105 nm), the second focuses on the variation in channel diameter (Dch = 10, 20, 40 and 80 nm) and the third focuses on the variation in channel oxide thickness (Tox = 1, 2, 3, 4 and 5 nm). Four performance evaluation metrics are considered, namely, subthreshold swing (SS), threshold voltage (Vth), drain-induced barrier lowering (DIBL) and drain current variation rate, ∆Id, which serves as an indicator of temperature sensitivity. The optimal stability- and sensitivity-based performance of NWTs can be achieved at certain optimal operating voltages with the SS values closer to the ideal state, a lower DIBL level and higher voltage threshold values. The simulation results for SiNWTs and GeNWTs highlight the effects of varying the channel dimensions (Lg, Dch, and Tox) on their temperature and electrical characteristics. Specifically, the temperature sensitivity (∆Id) of SiNWTs and GeNWTs significantly increased along with various channel dimensions and operating temperatures, and the optimal operating voltages are identified for each NWT. According to their temperature characteristics, SiNWTs show higher stability to ambient temperature variations compared with GeNWTs, which in turn demonstrate a higher sensitivity in all cases compared with SiNWT. In addition, SiNWTs outperform GeNWTs in terms of SS and Vth and demonstrate a faster switching speed and lower leakage current given that the values of SS are very close to the ideal state and high threshold voltages. SiNWTs also achieve a high DIBL level in certain cases, which is considered acceptable for most channel dimensions. The impact of changing the gate length on the behaviour of NWTs is very obvious, and varying the oxide thickness demonstrates the lowest impact. SiNWTs have high potential to be applied as temperature nanosensors due to their electrical and temperature stability

    Simulation study of scaling design, performance characterization, statistical variability and reliability of decananometer MOSFETs

    Get PDF
    This thesis describes a comprehensive, simulation based scaling study – including device design, performance characterization, and the impact of statistical variability – on deca-nanometer bulk MOSFETs. After careful calibration of fabrication processes and electrical characteristics for n- and p-MOSFETs with 35 nm physical gate length, 1 nm EOT and stress engineering, the simulated devices closely match the performance of contemporary 45 nm CMOS technologies. Scaling to 25 nm, 18 nm and 13 nm gate length n and p devices follows generalized scaling rules, augmented by physically realistic constraints and the introduction of high-k/metal-gate stacks. The scaled devices attain the performance stipulated by the ITRS. Device a.c. performance is analyzed, at device and circuit level. Extrinsic parasitics become critical to nano-CMOS device performance. The thesis describes device capacitance components, analyzes the CMOS inverter, and obtains new insights into the inverter propagation delay in nano-CMOS. The projection of a.c. performance of scaled devices is obtained. The statistical variability of electrical characteristics, due to intrinsic parameter fluctuation sources, in contemporary and scaled decananometer MOSFETs is systematically investigated for the first time. The statistical variability sources: random discrete dopants, gate line edge roughness and poly-silicon granularity are simulated, in combination, in an ensemble of microscopically different devices. An increasing trend in the standard deviation of the threshold voltage as a function of scaling is observed. The introduction of high-k/metal gates improves electrostatic integrity and slows this trend. Statistical evaluations of variability in Ion and Ioff as a function of scaling are also performed. For the first time, the impact of strain on statistical variability is studied. Gate line edge roughness results in areas of local channel shortening, accompanied by locally increased strain, both effects increasing the local current. Variations are observed in both the drive current, and in the drive current enhancement normally expected from the application of strain. In addition, the effects of shallow trench isolation (STI) on MOSFET performance and on its statistical variability are investigated for the first time. The inverse-narrow-width effect of STI enhances the current density adjacent to it. This leads to a local enhancement of the influence of junction shapes adjacent to the STI. There is also a statistical impact on the threshold voltage due to random STI induced traps at the silicon/oxide interface

    Nanowire Transistors and RF Circuits for Low-Power Applications

    Get PDF
    The background of this thesis is related to the steadily increasing demand of higher bandwidth and lower power consumption for transmitting data. The work aims at demonstrating how new types of structures, at the nanoscale, combined with what is referred to as exotic materials, can help benefit in electronics by lowering the consumed power, possibly by an order of magnitude, compared to the industry standard, silicon (Si), used today. Nanowires are semiconductor rods, with two dimensions at the nanoscale, which can be either grown with a bottom-up technique, or etched out with a top-down approach. The research interest concerning nanowires has gradually increasing for over two decades. Today, few have doubts that nanowires represent an attractive alternative, as scaling of planar structures has reached fundamental limits. With the enhanced electrostatics of a surrounding gate, nanowires offer the possibility of continued miniaturization, giving semiconductors a prolonged window of performance improvements. As a material choice, compound semiconductors with elements from group III and V (III-Vs), such as indium arsenide (InAs), have the possibility to dramatically decrease power consumption. The reason is the inherent electron transport properties of III-Vs, where an electron can travel, in the order of, 10 times faster than in Si. In the projected future, inclusion of III-Vs, as an extension to the Si-CMOS platform, seems almost inevitable, with many of the largest electronics manufacturing companies showing great interest. To investigate the technology potential, we have fabricated InAs nanowire metal-oxide-semiconductor field effect transistors (NW-FETs). The performance has been evaluated measuring both RF and DC characteristics. The best devices show a transconductance of 1.36 mS/µm (a device with a single nanowire, normalized to the nanowire circumference) and a maximum unilateral power gain at 57 GHz (for a device with several parallel nanowires), both values at a drive voltage of 0.5 V. The performance metrics are found to be limited by the capacitive load of the contact pads as well as the resistance in the non-gated segments of the nanowires. Using computer models, we have also been able to extract intrinsic transport properties, quantifying the velocity of charge carrier injection, which is the limiting property of semi-ballistic and ballistic devices. The value for our 45-nm-in-diameter nanowires, with 200 nm channel length, is determined to 1.7∙107 cm/s, comparable to other state-of-the-art devices at the same channel length. To demonstrate a higher level of functionality, we have connected several NW-FETs in a circuit. The fabricated circuit is a single balanced differential direct conversion mixer and is composed of three stages; transconductance, mixing, and transimpedance. The basic idea of the mixer circuit is that an information signal can either be extracted from or inserted into a carrier wave at a higher frequency than the information wave itself. It is the relative size of the first and the third stage that accounts for the circuit conversion gain. Measured circuits show a voltage conversion gain of 6 dB and a 3-dB bandwidth of 2 GHz. A conversion mixer is a vital component when building a transceiver, like those found in a cellphone and any other type of radio signal transmitting device. For all types of signals, noise imposes a fundamental limitation on the minimal, distinguishable amplitude. As transistors are scaled down, fewer carriers are involved in charge transport, and the impact of frequency dependent low-frequency noise gets relatively larger. Aiming towards low power applications, it is thus of importance to minimize the amount of transistor generated noise. Included in the thesis are studies of the level and origin of low-frequency 1/f-noise generated in NW-FETs. The measured noise spectral density is comparable to other non-planar devices, including those fabricated in Si. The data suggest that the level of generated noise can be substantially lowered by improving the high-k dielectric film quality and the channel interface. One significant discovery is that the part of the noise originating from the bulk nanowire, identified as mobility fluctuations, is comparably much lower than the measured noise level related to the nanowire surface. This result is promising as mobility fluctuations set the lower limit of what is achievable within a material system

    Characterization of 28 nm FDSOI MOS and application to the design of a low-power 2.4 GHz LNA

    Get PDF
    IoT is expected to connect billions of devices all over world in the next years, and in a near future, it is expected to use LR-WPAN in a wide variety of applications. Not all the devices will require of high performance but will require of low power hungry systems since most of them will be powered with a battery. Conventional CMOS technologies cannot cover these needs even scaling it to very small regimes, which appear other problems. Hence, new technologies are emerging to cover the needs of this devices. One promising technology is the UTBB FDSOI, which achieves good performance with very good energy efficiency. This project characterizes this technology to obtain a set of parameters of interest for analog/RF design. Finally, with the help of a low-power design methodology (gm/Id approach), a design of an ULP ULV LNA is performed to check the suitability of this technology for IoT

    High-Performance Silicon Nanowire Electronics

    Get PDF
    This thesis explores 10-nm wide Si nanowire (SiNW) field-effect transistors (FETs) for logic applications via the fabrication and testing of SiNW-based ring oscillators. Both SiNW surface treatments and dielectric annealing are reported for producing SiNW FETs that exhibit high performance in terms of large on/off-state current ratio (~108), low drain-induced barrier lowering (~30 mV), high carrier mobilities (~269 cm2/V•s), and low subthreshold swing (~80 mV/dec). The performance of inverter and ring-oscillator circuits fabricated from these nanowire FETs is explored as well. The inverter demonstrates the highest voltage gain (~148) reported for a SiNW-based NOT gate, and the ring oscillator exhibits near rail-to-rail oscillation centered at 13.4 MHz. The static and dynamic characteristics of these NW devices indicate that these SiNW-based FET circuits are excellent candidates for various high-performance nanoelectronic applications. A set of novel charge-trap non-volatile memory devices based on high-performance SiNW FETs are well investigated. These memory devices integrate Fe2O3 quantum dots (FeO QDs) as charge storage elements. A template-assisted assembly technique is used to align FeO QDs into a close-packed, ordered matrix within the trenches that separate highly aligned SiNWs, and thus store injected charges. A Fowler-Nordheim tunneling mechanism describes both the program and erase operations. The memory prototype demonstrates promising characteristics in terms of large threshold voltage shift (~1.3 V) and long data retention time (~3 × 106 s), and also allows for key components to be systematically varied. For example, varying the size of the QDs indicates that larger diameter QDs exhibit a larger memory window, suggesting the QD charging energy plays an important role in the carrier transport. The device temperature characteristics reveal an optimal window for device performance between 275K and 350K. The flexibility of integrating the charge-trap memory devices with the SiNW logic devices offers a low-cost embedded non-volatile memory solution. A building block for a SiNW-based field-programmable gate array (FPGA) is proposed in the future work.</p

    Design evolution of dual-material gate structure in cylindrical surrounding double-gate (CSDG) MOSFET using physics-based analytical modeling.

    Get PDF
    Doctoral Degree. University of KwaZulu- Natal, Durban.The Metal Oxide Semiconductor Field Effect Transistor (MOSFET) is the fundamental component in present Micro and Nano-electronics device applications, such as switching, memory devices, communication devices, etc. MOSFET’s dimension has shrunk down following Moore’s law to attain high-speed operation and packing density integration. The scaling of conventional MOSFET has been the most prominent technological challenge in the past few years because the decreasing device dimensions increase the charge sharing from the source to the drain and that in turn give rises to the reduced gate-control over the channel, hot carrier induced degradation, and other SCEs. These undesired effects devaluate the device performance that compels optimum device design analysis for particular operating conditions. Therefore, several innovative device design/architectures, including Double-gate, FinFET, Surrounding gate MOSFET, etc., have been developed to mitigate device scaling challenges. Comprehensive research can be traced long for one such promising gate-all-around MOSFET, i.e., Cylindrical Surrounding Double-Gate (CSDG) MOSFET centrally hollow concentric structure, provides an additional internal control gate that improves the device electrical performance and offers easy accessibility. There have been several developments in terms of improvements, and applications of CSDG MOSFET have been practiced since after its evolution. This thesis’s work has been targeted to incorporate the gate material engineering in the CSDG structure after appropriate analysis of device physics-based modeling. In particular to the proposed structure, the electric field, pinch off capacitance, and after that thickness of the device parameters’ dependence have been mathematically derived from attaining the objective. Finally, a model based on a dual-material gate in CSDG MOSFET has been proposed. The electrical field in CSDG MOSFET has been analyzed in detail using a mathematical derivation of device physics, including the Surface-Potential, threshold voltage, and the gate-oxide capacitances of the internal and external part of the device. Further, the gate-oxide capacitance of CSDG MOSFET, particularly to the device pinch-off condition, has been derived. Since the device operation and analysis at the shorter channel are not similar to conventional long-channel MOSFETs, the depletion-width variation has been studied. The identified notion has been applied to derive the approximate numerical solution and silicon thickness inducing parameters for CSDG MOSFET to deploy the improvements in the device performance and novel design modifications. As the gate-material and gate-stack engineering is an alternative to overcome the device performance degradation by enhancing the charge transport efficiency, the CSDG MOSFET in a novel Dual-Metal Gate (DMG) structure design has been proposed and analyzed using the solution of 2D Poisson’s equations in the geometrical boundary conditions of the device. The model expressions obtained solution using the proposed structure has been compared with a single metal gate structure. Finally, it has been analyzed that the proposed model exhibits an excellent match with the analytical model. The obtained DMG device structure advances the carrier velocity and transport efficiency, resulting in the surface-potential profile caused by dissimilar gate metal work-function. The superior device characteristics obtained employing a dual-material structure in CSDG are promising and can reduce the threshold voltage roll-off, suppress the hot-carrier effects and SCEs
    • …
    corecore