390 research outputs found

    Legged Robots for Object Manipulation: A Review

    Get PDF
    Legged robots can have a unique role in manipulating objects in dynamic, human-centric, or otherwise inaccessible environments. Although most legged robotics research to date typically focuses on traversing these challenging environments, many legged platform demonstrations have also included "moving an object" as a way of doing tangible work. Legged robots can be designed to manipulate a particular type of object (e.g., a cardboard box, a soccer ball, or a larger piece of furniture), by themselves or collaboratively. The objective of this review is to collect and learn from these examples, to both organize the work done so far in the community and highlight interesting open avenues for future work. This review categorizes existing works into four main manipulation methods: object interactions without grasping, manipulation with walking legs, dedicated non-locomotive arms, and legged teams. Each method has different design and autonomy features, which are illustrated by available examples in the literature. Based on a few simplifying assumptions, we further provide quantitative comparisons for the range of possible relative sizes of the manipulated object with respect to the robot. Taken together, these examples suggest new directions for research in legged robot manipulation, such as multifunctional limbs, terrain modeling, or learning-based control, to support a number of new deployments in challenging indoor/outdoor scenarios in warehouses/construction sites, preserved natural areas, and especially for home robotics.Comment: Preprint of the paper submitted to Frontiers in Mechanical Engineerin

    Tele-operation and Human Robots Interactions

    Get PDF

    Dynamic Bat-Control of a Redundant Ball Playing Robot

    Get PDF
    This thesis shows a control algorithm for coping with a ball batting task for an entertainment robot. The robot is a three jointed robot with a redundant degree of freedom and its name is Doggy . Doggy because of its dog-like costume. Design, mechanics and electronics were developed by us. DC-motors control the tooth belt driven joints, resulting in elasticities between the motor and link. Redundancy and elasticity have to be taken into account by our developed controller and are demanding control tasks. In this thesis we show the structure of the ball playing robot and how this structure can be described as a model. We distinguish two models: One model that includes a flexible bearing, the other does not. Both models are calibrated using the toolkit Sparse Least Squares on Manifolds (SLOM) - i.e. the parameters for the model are determined. Both calibrated models are compared to measurements of the real system. The model with the flexible bearing is used to implement a state estimator - based on a Kalman filter - on a microcontroller. This ensures real time estimation of the robot states. The estimated states are also compared with the measurements and are assessed. The estimated states represent the measurements well. In the core of this work we develop a Task Level Optimal Controller (TLOC), a model-predictive optimal controller based on the principles of a Linear Quadratic Regulator (LQR). We aim to play a ball back to an opponent precisely. We show how this task of playing a ball at a desired time with a desired velocity at a desired position can be embedded into the LQR principle. We use cost functions for the task description. In simulations, we show the functionality of the control concept, which consists of a linear part (on a microcontroller) and a nonlinear part (PC software). The linear part uses feedback gains which are calculated by the nonlinear part. The concept of the ball batting controller with precalculated feedback gains is evaluated on the robot. This shows successful batting motions. The entertainment aspect has been tested on the Open Campus Day at the University of Bremen and is summarized here shortly. Likewise, a jointly developed audience interaction by recognition of distinctive sounds is summarized herein. In this thesis we answer the question, if it is possible to define a rebound task for our robot within a controller and show the necessary steps for this

    Autonomous Robotic Systems in a Variable World:A Task-Centric approach based on Explainable Models

    Get PDF

    Autonomous Robotic Systems in a Variable World:A Task-Centric approach based on Explainable Models

    Get PDF

    Abstracting Multidimensional Concepts for Multilevel Decision Making in Multirobot Systems

    Get PDF
    Multirobot control architectures often require robotic tasks to be well defined before allocation. In complex missions, it is often difficult to decompose an objective into a set of well defined tasks; human operators generate a simplified representation based on experience and estimation. The result is a set of robot roles, which are not best suited to accomplishing those objectives. This thesis presents an alternative approach to generating multirobot control algorithms using task abstraction. By carefully analysing data recorded from similar systems a multidimensional and multilevel representation of the mission can be abstracted, which can be subsequently converted into a robotic controller. This work, which focuses on the control of a team of robots to play the complex game of football, is divided into three sections: In the first section we investigate the use of spatial structures in team games. Experimental results show that cooperative teams beat groups of individuals when competing for space and that controlling space is important in the game of robot football. In the second section, we generate a multilevel representation of robot football based on spatial structures measured in recorded matches. By differentiating between spatial configurations appearing in desirable and undesirable situations, we can abstract a strategy composed of the more desirable structures. In the third section, five partial strategies are generated, based on the abstracted structures, and a suitable controller is devised. A set of experiments shows the success of the method in reproducing those key structures in a multirobot system. Finally, we compile our methods into a formal architecture for task abstraction and control. The thesis concludes that generating multirobot control algorithms using task abstraction is appropriate for problems which are complex, weakly-defined, multilevel, dynamic, competitive, unpredictable, and which display emergent properties

    Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions

    Get PDF
    Welcome to ROBOTICA 2009. This is the 9th edition of the conference on Autonomous Robot Systems and Competitions, the third time with IEEE‐Robotics and Automation Society Technical Co‐Sponsorship. Previous editions were held since 2001 in Guimarães, Aveiro, Porto, Lisboa, Coimbra and Algarve. ROBOTICA 2009 is held on the 7th May, 2009, in Castelo Branco , Portugal. ROBOTICA has received 32 paper submissions, from 10 countries, in South America, Asia and Europe. To evaluate each submission, three reviews by paper were performed by the international program committee. 23 papers were published in the proceedings and presented at the conference. Of these, 14 papers were selected for oral presentation and 9 papers were selected for poster presentation. The global acceptance ratio was 72%. After the conference, eighth papers will be published in the Portuguese journal Robótica, and the best student paper will be published in IEEE Multidisciplinary Engineering Education Magazine. Three prizes will be awarded in the conference for: the best conference paper, the best student paper and the best presentation. The last two, sponsored by the IEEE Education Society ‐ Student Activities Committee. We would like to express our thanks to all participants. First of all to the authors, whose quality work is the essence of this conference. Next, to all the members of the international program committee and reviewers, who helped us with their expertise and valuable time. We would also like to deeply thank the invited speaker, Jean Paul Laumond, LAAS‐CNRS France, for their excellent contribution in the field of humanoid robots. Finally, a word of appreciation for the hard work of the secretariat and volunteers. Our deep gratitude goes to the Scientific Organisations that kindly agreed to sponsor the Conference, and made it come true. We look forward to seeing more results of R&D work on Robotics at ROBOTICA 2010, somewhere in Portugal

    Humanoid Robot Soccer Locomotion and Kick Dynamics: Open Loop Walking, Kicking and Morphing into Special Motions on the Nao Robot

    Get PDF
    Striker speed and accuracy in the RoboCup (SPL) international robot soccer league is becoming increasingly important as the level of play rises. Competition around the ball is now decided in a matter of seconds. Therefore, eliminating any wasted actions or motions is crucial when attempting to kick the ball. It is common to see a discontinuity between walking and kicking where a robot will return to an initial pose in preparation for the kick action. In this thesis we explore the removal of this behaviour by developing a transition gait that morphs the walk directly into the kick back swing pose. The solution presented here is targeted towards the use of the Aldebaran walk for the Nao robot. The solution we develop involves the design of a central pattern generator to allow for controlled steps with realtime accuracy, and a phase locked loop method to synchronise with the Aldebaran walk so that precise step length control can be activated when required. An open loop trajectory mapping approach is taken to the walk that is stabilized statically through the use of a phase varying joint holding torque technique. We also examine the basic princples of open loop walking, focussing on the commonly overlooked frontal plane motion. The act of kicking itself is explored both analytically and empirically, and solutions are provided that are versatile and powerful. Included as an appendix, the broader matter of striker behaviour (process of goal scoring) is reviewed and we present a velocity control algorithm that is very accurate and efficient in terms of speed of execution
    • 

    corecore