48,531 research outputs found

    An Intelligent Auto-Tracking Vehicle

    Get PDF
    With gas prices at historic highs and fuel-efficient cars in vogue, the time might be perfect to introduce the Smart Car. The chief goal of this paper is designing a smart car with transportation capabilities of a traditional car. The project introduces ways of making car to sense the environment and navigating on its own. The algorithm is implemented using a freescale’s32-bit MPC5604 microcontroller and CODEWARRIOR (IDE) software. It is based on Free Ranging on Grid Technology (FROG) which uses Automated Guided Vehicle Systems (AGV), which are driverless cars. An AGV is a robotic device that follows marks in the floor. The fundamental requirement for this smart car is to sense the given track in a most efficient and in a considerably very short time. The actuators used for lateral and longitudinal control were a servo and a D.C motor respectively. Thus a model car can be designed with electrical, electronic and mechanical systems and can be travelled in smoother and faster way in the track by electromechanical control. In such automated systems, vehicles are programmed to have various features to ensure smooth car navigation, traffic signal control, cameras to monitor and systems to maintain appropriate speed limits etc. Thus in future, this kind of smart cars acts as an intelligent transport system

    Computational approaches for voltage stability monitoring and control in power systems

    Get PDF
    The electric power grid is a complex, non-linear, non-stationary system comprising of thousands of components such as generators, transformers, transmission lines and advanced power electronics based control devices, and customer loads. The complexity of the grid has been further increased by the introduction of smart grid technologies. Smart grid technology adds to the traditional power grids advanced methods of communication, computation and control as well as increased use of renewable energy sources such as wind and solar farms and a higher penetration of plug-in electric vehicles among others. The smart grid has resulted in much more distributed generation, bi-directional powerflows between customers and the grid, and the semi-autonomous control of subsystems. Due to this added complexity of the grid and the need to maintain reliable, quality, efficient, economical, and environmentally friendly power supply, advanced monitoring and control technologies are needed for real-time operation of various systems that integrate into the transmission and distribution network. In this dissertation, the development of computational intelligence methods for on-line monitoring of voltage stability in a power system is presented. In order to carry out on-line assessment of voltage stability, data from Phasor Measurement Units (PMUs) is utilized. An intelligent algorithm for optimal location of PMUs for voltage stability monitoring is developed. PMU information is used for estimation of voltage stability load index in a power system with plug-in electric vehicle and wind farm included. The estimated voltage stability index is applied in the development of an adaptive dynamic programming based optimal secondary voltage controller to coordinate the reactive power capability of two FACTS devices --Abstract, page iii

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    Impact of intelligent control algorithms on demand response flexibility and thermal comfort in a smart grid ready residential building

    Get PDF
    The present paper investigates the impact of advanced control algorithms on harnessing building energy flexibility in a smart-grid ready full-electric residential building. The impact on thermal comfort is also analysed. The building is located in Ireland and is equipped with a geothermal heat pump and a thermal energy storage system. Two Energy Management systems, based on rule-based and intelligent optimisation algorithm approaches, are developed which use real-time building smart meter and weather data. This data is utilised by various dynamic flexibility metrics within the respective control algorithms. Different time of use tariffs, based on data from the Irish Commission for Energy Regulation and structured on the basis of peak, off-peak and night periods, are also used. Results show that energy cost reductions of up to 21% and 43% can be achieved by the rule-based and intelligent algorithm, respectively, without compromising the thermal comfort within the building. Moreover, total shifting and forcing flexibility potential of up to 34 and 54 kWh, respectively, based on the month of January, can be achieved by the adoption of the intelligent control algorithm

    Secure Control and Operation of Energy Cyber-Physical Systems Through Intelligent Agents

    Get PDF
    The operation of the smart grid is expected to be heavily reliant on microprocessor-based control. Thus, there is a strong need for interoperability standards to address the heterogeneous nature of the data in the smart grid. In this research, we analyzed in detail the security threats of the Generic Object Oriented Substation Events (GOOSE) and Sampled Measured Values (SMV) protocol mappings of the IEC 61850 data modeling standard, which is the most widely industry-accepted standard for power system automation and control. We found that there is a strong need for security solutions that are capable of defending the grid against cyber-attacks, minimizing the damage in case a cyber-incident occurs, and restoring services within minimal time. To address these risks, we focused on correlating cyber security algorithms with physical characteristics of the power system by developing intelligent agents that use this knowledge as an important second line of defense in detecting malicious activity. This will complement the cyber security methods, including encryption and authentication. Firstly, we developed a physical-model-checking algorithm, which uses artificial neural networks to identify switching-related attacks on power systems based on load flow characteristics. Secondly, the feasibility of using neural network forecasters to detect spoofed sampled values was investigated. We showed that although such forecasters have high spoofed-data-detection accuracy, they are prone to the accumulation of forecasting error. In this research, we proposed an algorithm to detect the accumulation of the forecasting error based on lightweight statistical indicators. The effectiveness of the proposed algorithms was experimentally verified on the Smart Grid testbed at FIU. The test results showed that the proposed techniques have a minimal detection latency, in the range of microseconds. Also, in this research we developed a network-in-the-loop co-simulation platform that seamlessly integrates the components of the smart grid together, especially since they are governed by different regulations and owned by different entities. Power system simulation software, microcontrollers, and a real communication infrastructure were combined together to provide a cohesive smart grid platform. A data-centric communication scheme was selected to provide an interoperability layer between multi-vendor devices, software packages, and to bridge different protocols together

    Smart Grid Technologies in Europe: An Overview

    Get PDF
    The old electricity network infrastructure has proven to be inadequate, with respect to modern challenges such as alternative energy sources, electricity demand and energy saving policies. Moreover, Information and Communication Technologies (ICT) seem to have reached an adequate level of reliability and flexibility in order to support a new concept of electricity network—the smart grid. In this work, we will analyse the state-of-the-art of smart grids, in their technical, management, security, and optimization aspects. We will also provide a brief overview of the regulatory aspects involved in the development of a smart grid, mainly from the viewpoint of the European Unio
    corecore