541 research outputs found

    Federated Robust Embedded Systems: Concepts and Challenges

    Get PDF
    The development within the area of embedded systems (ESs) is moving rapidly, not least due to falling costs of computation and communication equipment. It is believed that increased communication opportunities will lead to the future ESs no longer being parts of isolated products, but rather parts of larger communities or federations of ESs, within which information is exchanged for the benefit of all participants. This vision is asserted by a number of interrelated research topics, such as the internet of things, cyber-physical systems, systems of systems, and multi-agent systems. In this work, the focus is primarily on ESs, with their specific real-time and safety requirements. While the vision of interconnected ESs is quite promising, it also brings great challenges to the development of future systems in an efficient, safe, and reliable way. In this work, a pre-study has been carried out in order to gain a better understanding about common concepts and challenges that naturally arise in federations of ESs. The work was organized around a series of workshops, with contributions from both academic participants and industrial partners with a strong experience in ES development. During the workshops, a portfolio of possible ES federation scenarios was collected, and a number of application examples were discussed more thoroughly on different abstraction levels, starting from screening the nature of interactions on the federation level and proceeding down to the implementation details within each ES. These discussions led to a better understanding of what can be expected in the future federated ESs. In this report, the discussed applications are summarized, together with their characteristics, challenges, and necessary solution elements, providing a ground for the future research within the area of communicating ESs

    Decentralised Coordination in RoboCup Rescue

    No full text
    Emergency responders are faced with a number of significant challenges when managing major disasters. First, the number of rescue tasks posed is usually larger than the number of responders (or agents) and the resources available to them. Second, each task is likely to require a different level of effort in order to be completed by its deadline. Third, new tasks may continually appear or disappear from the environment, thus requiring the responders to quickly recompute their allocation of resources. Fourth, forming teams or coalitions of multiple agents from different agencies is vital since no single agency will have all the resources needed to save victims, unblock roads, and extinguish the ?res which might erupt in the disaster space. Given this, coalitions have to be efficiently selected and scheduled to work across the disaster space so as to maximise the number of lives and the portion of the infrastructure saved. In particular, it is important that the selection of such coalitions should be performed in a decentralised fashion in order to avoid a single point of failure in the system. Moreover, it is critical that responders communicate only locally given they are likely to have limited battery power or minimal access to long range communication devices. Against this background, we provide a novel decentralised solution to the coalition formation process that pervades disaster management. More specifically, we model the emergency management scenario defined in the RoboCup Rescue disaster simulation platform as a Coalition Formation with Spatial and Temporal constraints (CFST) problem where agents form coalitions in order to complete tasks, each with different demands. In order to design a decentralised algorithm for CFST we formulate it as a Distributed Constraint Optimisation problem and show how to solve it using the state-of-the-art Max-Sum algorithm that provides a completely decentralised message-passing solution. We then provide a novel algorithm (F-Max-Sum) that avoids sending redundant messages and efficiently adapts to changes in the environment. In empirical evaluations, our algorithm is shown to generate better solutions than other decentralised algorithms used for this problem

    Agent-based material transportation scheduling of AGV systems and its manufacturing applications

    Get PDF
    制度:新 ; 報告番号:甲3743号 ; 学位の種類:博士(工学) ; 授与年月日:2012/9/10 ; 早大学位記番号:新6114Waseda Universit

    An Agent Oriented Analysis and Modeling of Airborne Capabilities for Trajectory Based Operations

    Get PDF
    Current and future air traffic is requiring new procedures and systems to achieve a greater automation of air-traffic operations. Particular difficulty presents the automation of arrival air-traffic operations in terminal areas due to aircraft speeds and environment variability into a delimited airspace where multiple aircraft converge. Several projects have proposed guidelines to implement new operational concepts as well as airborne and ground systems to carry out corresponding procedures. Developing procedures and systems are closely related. Therefore, usually it requires to analyze and to design them in a combined manner. In this paper we present an agent-oriented analysis and modeling of airborne systems capabilities to perform automated arrival and approach procedures based on user preference trajectories. A detailed architecture model of airborne capabilities is achieved through a methodological analysis of an arrival traffic scenario within the trajectory based operations paradigm

    PROSIS: An isoarchic structure for HMS control

    No full text
    International audienceThis paper presents a holonic and isoarchic approach to the Flexible Manufacturing System (FMS) control. This approach is based on a flat holonic form, where each holon is a model for each entity of the FMS, with a unifying level of communication between holons. After description of this model, called PROSIS, the interaction protocol and decision rules are presented. The objective is to increase the FMS productivity and flexibility, particularly on responsiveness aspects. This responsiveness is achieved through decentralized generation of the production tasks. The reactive behaviour of the FMS control is illustrated by the example of a flexible turning cell, upon occurrence of a failure or of an urgent batch order, and the resulting Gantt charts are shown

    Dynamic coordination in fleet management systems: Toward smart cyber fleets

    Get PDF
    Fleet management systems are commonly used to coordinate mobility and delivery services in a broad variety of domains. However, their traditional top-down control architecture becomes a bottleneck in open and dynamic environments, where scalability, proactiveness, and autonomy are becoming key factors for their success. Here, the authors present an abstract event-based architecture for fleet management systems that supports tailoring dynamic control regimes for coordinating fleet vehicles, and illustrate it for the case of medical emergency management. Then, they go one step ahead in the transition toward automatic or driverless fleets, by conceiving fleet management systems in terms of cyber-physical systems, and putting forward the notion of cyber fleets. © 2014 IEEE.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness through the projects “Agreement Technologies” (grant CSD2007-0022; CONSOLIDER-INGENIO 2010), “intelligent Human-Agent Societies” (grant TIN2012-36586-C03-02), and “Smart Delivery” (grant RTC-2014-1850-4).Peer Reviewe
    corecore