1,365 research outputs found

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Living on the Edge: The Role of Proactive Caching in 5G Wireless Networks

    Full text link
    This article explores one of the key enablers of beyond 44G wireless networks leveraging small cell network deployments, namely proactive caching. Endowed with predictive capabilities and harnessing recent developments in storage, context-awareness and social networks, peak traffic demands can be substantially reduced by proactively serving predictable user demands, via caching at base stations and users' devices. In order to show the effectiveness of proactive caching, we examine two case studies which exploit the spatial and social structure of the network, where proactive caching plays a crucial role. Firstly, in order to alleviate backhaul congestion, we propose a mechanism whereby files are proactively cached during off-peak demands based on file popularity and correlations among users and files patterns. Secondly, leveraging social networks and device-to-device (D2D) communications, we propose a procedure that exploits the social structure of the network by predicting the set of influential users to (proactively) cache strategic contents and disseminate them to their social ties via D2D communications. Exploiting this proactive caching paradigm, numerical results show that important gains can be obtained for each case study, with backhaul savings and a higher ratio of satisfied users of up to 22%22\% and 26%26\%, respectively. Higher gains can be further obtained by increasing the storage capability at the network edge.Comment: accepted for publication in IEEE Communications Magazin

    A survey of multi-access edge computing in 5G and beyond : fundamentals, technology integration, and state-of-the-art

    Get PDF
    Driven by the emergence of new compute-intensive applications and the vision of the Internet of Things (IoT), it is foreseen that the emerging 5G network will face an unprecedented increase in traffic volume and computation demands. However, end users mostly have limited storage capacities and finite processing capabilities, thus how to run compute-intensive applications on resource-constrained users has recently become a natural concern. Mobile edge computing (MEC), a key technology in the emerging fifth generation (5G) network, can optimize mobile resources by hosting compute-intensive applications, process large data before sending to the cloud, provide the cloud-computing capabilities within the radio access network (RAN) in close proximity to mobile users, and offer context-aware services with the help of RAN information. Therefore, MEC enables a wide variety of applications, where the real-time response is strictly required, e.g., driverless vehicles, augmented reality, robotics, and immerse media. Indeed, the paradigm shift from 4G to 5G could become a reality with the advent of new technological concepts. The successful realization of MEC in the 5G network is still in its infancy and demands for constant efforts from both academic and industry communities. In this survey, we first provide a holistic overview of MEC technology and its potential use cases and applications. Then, we outline up-to-date researches on the integration of MEC with the new technologies that will be deployed in 5G and beyond. We also summarize testbeds and experimental evaluations, and open source activities, for edge computing. We further summarize lessons learned from state-of-the-art research works as well as discuss challenges and potential future directions for MEC research

    Dense Moving Fog for Intelligent IoT: Key Challenges and Opportunities

    Get PDF
    As the ratification of 5G New Radio technology is being completed, enabling network architectures are expected to undertake a matching effort. Conventional cloud and edge computing paradigms may thus become insufficient in supporting the increasingly stringent operating requirements of \emph{intelligent~Internet-of-Things (IoT) devices} that can move unpredictably and at high speeds. Complementing these, the concept of fog emerges to deploy cooperative cloud-like functions in the immediate vicinity of various moving devices, such as connected and autonomous vehicles, on the road and in the air. Envisioning gradual evolution of these infrastructures toward the increasingly denser geographical distribution of fog functionality, we in this work put forward the vision of dense moving fog for intelligent IoT applications. To this aim, we review the recent powerful enablers, outline the main challenges and opportunities, and corroborate the performance benefits of collaborative dense fog operation in a characteristic use case featuring a connected fleet of autonomous vehicles.Comment: 7 pages, 5 figures, 1 table. The work has been accepted for publication in IEEE Communications Magazine, 2019. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Echo State Networks for Proactive Caching in Cloud-Based Radio Access Networks with Mobile Users

    Full text link
    In this paper, the problem of proactive caching is studied for cloud radio access networks (CRANs). In the studied model, the baseband units (BBUs) can predict the content request distribution and mobility pattern of each user, determine which content to cache at remote radio heads and BBUs. This problem is formulated as an optimization problem which jointly incorporates backhaul and fronthaul loads and content caching. To solve this problem, an algorithm that combines the machine learning framework of echo state networks with sublinear algorithms is proposed. Using echo state networks (ESNs), the BBUs can predict each user's content request distribution and mobility pattern while having only limited information on the network's and user's state. In order to predict each user's periodic mobility pattern with minimal complexity, the memory capacity of the corresponding ESN is derived for a periodic input. This memory capacity is shown to be able to record the maximum amount of user information for the proposed ESN model. Then, a sublinear algorithm is proposed to determine which content to cache while using limited content request distribution samples. Simulation results using real data from Youku and the Beijing University of Posts and Telecommunications show that the proposed approach yields significant gains, in terms of sum effective capacity, that reach up to 27.8% and 30.7%, respectively, compared to random caching with clustering and random caching without clustering algorithm.Comment: Accepted in the IEEE Transactions on Wireless Communication
    corecore