384 research outputs found

    Design, Testing and Evaluation of Robotic Mechanisms and Systems for Environmental Monitoring and Interaction

    Get PDF
    Unmanned Aerial Vehicles (UAVs) have significantly lowered the cost of remote aerial data collection. The next generation of UAVs, however, will transform the way that scientists and practitioners interact with the environment. In this thesis, we address the challenges of flying low over water to collect water samples and temperature data. We also develop a system that allows UAVs to ignite prescribed fires. Specifically, this thesis contributes a new peristaltic pump designed for use on a UAV for collecting water samples from up to 3m depth and capable of pumping over 6m above the water. Next, temperature sensors and their deployment on UAVs, which have successfully created a 3D thermal structure map of a lake, contributes to mobile sensors. A sub-surface sampler, the “Waterbug” which can sample from 10m deep and vary buoyancy for longer in-situ analysis contributes to robotics and mobile sensors. Finally, we designed and built an Unmanned Aerial System for Fire Fighting (UAS-FF), which successfully ignited over 150 acres of prescribed fire during two field tests and is the first autonomous robot system for this application. Advisers: Carrick Detweiler and Carl Nelso

    Mobile-manipulating UAVs for Sensor Installation, Bridge Inspection and Maintenance

    Get PDF
    A parallel mechanism and smart gripper was designed and mounted on a rotorcraft drone to act as a robotic arm and hand. This empowers the drone to perform aerial manipulation and execute bridge maintenance. Hosing, drilling, and epoxying serve as case studies to test-and-evaluation and verify-and-validate the design. The approach, tasks, and findings are presented and show that the case studies are realizable. Conclusions and recommendations point to employing haptics-based human-in-the-loop approaches that can increase the scope of repair work involved in bridge maintenance

    The NASA SBIR product catalog

    Get PDF
    The purpose of this catalog is to assist small business firms in making the community aware of products emerging from their efforts in the Small Business Innovation Research (SBIR) program. It contains descriptions of some products that have advanced into Phase 3 and others that are identified as prospective products. Both lists of products in this catalog are based on information supplied by NASA SBIR contractors in responding to an invitation to be represented in this document. Generally, all products suggested by the small firms were included in order to meet the goals of information exchange for SBIR results. Of the 444 SBIR contractors NASA queried, 137 provided information on 219 products. The catalog presents the product information in the technology areas listed in the table of contents. Within each area, the products are listed in alphabetical order by product name and are given identifying numbers. Also included is an alphabetical listing of the companies that have products described. This listing cross-references the product list and provides information on the business activity of each firm. In addition, there are three indexes: one a list of firms by states, one that lists the products according to NASA Centers that managed the SBIR projects, and one that lists the products by the relevant Technical Topics utilized in NASA's annual program solicitation under which each SBIR project was selected

    Robotic Olfactory-Based Navigation with Mobile Robots

    Get PDF
    Robotic odor source localization (OSL) is a technology that enables mobile robots or autonomous vehicles to find an odor source in unknown environments. It has been viewed as challenging due to the turbulent nature of airflows and the resulting odor plume characteristics. The key to correctly finding an odor source is designing an effective olfactory-based navigation algorithm, which guides the robot to detect emitted odor plumes as cues in finding the source. This dissertation proposes three kinds of olfactory-based navigation methods to improve search efficiency while maintaining a low computational cost, incorporating different machine learning and artificial intelligence methods. A. Adaptive Bio-inspired Navigation via Fuzzy Inference Systems. In nature, animals use olfaction to perform many life-essential activities, such as homing, foraging, mate-seeking, and evading predators. Inspired by the mate-seeking behaviors of male moths, this method presents a behavior-based navigation algorithm for using on a mobile robot to locate an odor source. Unlike traditional bio-inspired methods, which use fixed parameters to formulate robot search trajectories, a fuzzy inference system is designed to perceive the environment and adjust trajectory parameters based on the current search situation. The robot can automatically adapt the scale of search trajectories to fit environmental changes and balance the exploration and exploitation of the search. B. Olfactory-based Navigation via Model-based Reinforcement Learning Methods. This method analogizes the odor source localization as a reinforcement learning problem. During the odor plume tracing process, the belief state in a partially observable Markov decision process model is adapted to generate a source probability map that estimates possible odor source locations. A hidden Markov model is employed to produce a plume distribution map that premises plume propagation areas. Both source and plume estimates are fed to the robot. A decision-making model based on a fuzzy inference system is designed to dynamically fuse information from two maps and balance the exploitation and exploration of the search. After assigning the fused information to reward functions, a value iteration-based path planning algorithm solves the optimal action policy. C. Robotic Odor Source Localization via Deep Learning-based Methods. This method investigates the viability of implementing deep learning algorithms to solve the odor source localization problem. The primary objective is to obtain a deep learning model that guides a mobile robot to find an odor source without explicating search strategies. To achieve this goal, two kinds of deep learning models, including adaptive neuro-fuzzy inference system (ANFIS) and deep neural networks (DNNs), are employed to generate the olfactory-based navigation strategies. Multiple training data sets are acquired by applying two traditional methods in both simulation and on-vehicle tests to train deep learning models. After the supervised training, the deep learning models are verified with unseen search situations in simulation and real-world environments. All proposed algorithms are implemented in simulation and on-vehicle tests to verify their effectiveness. Compared to traditional methods, experiment results show that the proposed algorithms outperform them in terms of the success rate and average search time. Finally, the future research directions are presented at the end of the dissertation

    Aeronautical engineering: A continuing bibliography with indexes (supplement 278)

    Get PDF
    This bibliography lists 414 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1992

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 341)

    Get PDF
    This bibliography lists 133 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during September 1990. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Visual and Kinematic Coordinated Control of Mobile Manipulating Unmanned Aerial Vehicles

    Get PDF
    Manipulating objects using arms mounted to unmanned aerial vehicles (UAVs) is attractive because UAVs may access many locations that are otherwise inaccessible to traditional mobile manipulation platforms such as ground vehicles. Historically, UAVs have been employed in ways that avoid interaction with the environment at all costs. The recent trend of increasing small UAV lift capacity and the reduction of the weight of manipulator components make the realization of mobile manipulating UAVs imminent. Despite recent work, several major challenges remain to be overcome before it will be common practice to manipulate objects from UAVs. Among these challenges, the constantly moving UAV platform and compliance of manipulator arms make it difficult to position the UAV and end-effector relative to an object of interest precisely enough for reliable manipulation. Solving this challenge will bring UAVs one step closer to being able to perform meaningful tasks such as infrastructure repair, disaster response, law enforcement, and personal assistance. Toward a solution to this challenge, this thesis describes a way forward that uses the UAV as a means to crudely position a manipulator within reach of the end-effector's goal position in the world. The manipulator then performs the fine positioning of the end-effector, rejecting position perturbations caused by UAV motions. An algorithm to coordinate the redundant degrees of freedom of an aerial manipulation system is described that allows the motions of the manipulator to serve as inputs to the UAV's position controller. To demonstrate this algorithm, the manipulator's six degrees of freedom are servoed using visual sensing to drive an eye-in-hand camera to a specified pose relative to a target while treating motions of the host platform as perturbations. Simultaneously, the host platform's degrees of freedom are regulated using kinematic information from the manipulator. This ultimately drives the UAV to a position that allows the manipulator to assume a pose relative to the UAV that maximizes reachability, thus facilitating the arm's ability to compensate for undesired UAV motions. Maintaining this loose kinematic coupling between the redundant degrees of freedom of the host UAV and manipulator allows this type of controller to be applied to a wide variety of platforms, including manned aircraft, rather than a single instance of a purpose-built system. As a result of this loose coupling, careful consideration must be given to the manipulator design so that it can achieve useful poses while minimally influencing the stability of the host UAV. Accordingly, the novel application of a parallel manipulator mechanism is described.Ph.D., Mechanical Engineering -- Drexel University, 201

    Design, Testing and Evaluation of Robotic Mechanisms and Systems for Environmental Monitoring and Interaction

    Get PDF
    Unmanned Aerial Vehicles (UAVs) have significantly lowered the cost of remote aerial data collection. The next generation of UAVs, however, will transform the way that scientists and practitioners interact with the environment. In this thesis, we address the challenges of flying low over water to collect water samples and temperature data. We also develop a system that allows UAVs to ignite prescribed fires. Specifically, this thesis contributes a new peristaltic pump designed for use on a UAV for collecting water samples from up to 3m depth and capable of pumping over 6m above the water. Next, temperature sensors and their deployment on UAVs, which have successfully created a 3D thermal structure map of a lake, contributes to mobile sensors. A sub-surface sampler, the “Waterbug” which can sample from 10m deep and vary buoyancy for longer in-situ analysis contributes to robotics and mobile sensors. Finally, we designed and built an Unmanned Aerial System for Fire Fighting (UAS-FF), which successfully ignited over 150 acres of prescribed fire during two field tests and is the first autonomous robot system for this application. Advisers: Carrick Detweiler and Carl Nelso
    corecore