55,403 research outputs found

    A ROS2 based communication architecture for control in collaborative and intelligent automation systems

    Get PDF
    Collaborative robots are becoming part of intelligent automation systems in modern industry. Development and control of such systems differs from traditional automation methods and consequently leads to new challenges. Thankfully, Robot Operating System (ROS) provides a communication platform and a vast variety of tools and utilities that can aid that development. However, it is hard to use ROS in large-scale automation systems due to communication issues in a distributed setup, hence the development of ROS2. In this paper, a ROS2 based communication architecture is presented together with an industrial use-case of a collaborative and intelligent automation system.Comment: 9 pages, 4 figures, 3 tables, to be published in the proceedings of 29th International Conference on Flexible Automation and Intelligent Manufacturing (FAIM2019), June 201

    Application of the sequence planner control framework to an intelligent automation system with a focus on error handling

    Get PDF
    Future automation systems are likely to include devices with a varying degree of autonomy, as well as advanced algorithms for perception and control. Human operators will be expected to work side by side with both collaborative robots performing assembly tasks and roaming robots that handle material transport. To maintain the flexibility provided by human operators when introducing such robots, these autonomous robots need to be intelligently coordinated, i.e., they need to be supported by an intelligent automation system. One challenge in developing intelligent automation systems is handling the large amount of possible error situations that can arise due to the volatile and sometimes unpredictable nature of the environment. Sequence Planner is a control framework that supports the development of intelligent automation systems. This paper describes Sequence Planner and tests its ability to handle errors that arise during execution of an intelligent automation system. An automation system, developed using Sequence Planner, is subjected to a number of scenarios where errors occur. The error scenarios and experimental results are presented along with a discussion of the experience gained in trying to achieve robust intelligent automation

    Towards safe human robot collaboration - Risk assessment of intelligent automation

    Get PDF
    Automation and robotics are two enablers for developing the Smart Factory of the Future, which is based on intelligent machines and collaboration between robots and humans. Especially in final assembly and its material handling, where traditional automation is challenging to use, collaborative robot (cobot) systems may increase the flexibility needed infuture production systems. A major obstacle to deploy a truly collaborative application is to design and implement a safe and efficient interaction between humans and robot systems while maintaining industrial requirements such as cost and productivity. Advanced and intelligent control strategies is the enabler when creating this safe, yet efficient, system, but is often hard to design and build.This paper highlights and discusses the challenges in meeting safety requirements according to current safety standards, starting with the mandatory risk assessment and then applying risk reduction measures, when transforming a typical manual final assembly station into an intelligent collaborative station. An important conclusion is that current safety standards and requirements must be updated and improved and the current collaborative modes defined by the standards community should be extended with a new mode, which in this paper is refereed tothedeliberative planning and acting mode

    Towards an infrastructure for preparation and control of intelligent automation systems

    Get PDF
    In an attempt to handle some of the challenges of modern production, intelligent automation systems offer solutions that are flexible, adaptive, and collaborative. Contrary to traditional solutions, intelligent automation systems emerged just recently and thus lack the supporting tools and infrastructure that traditional systems nowadays take for granted. To support efficient development, commissioning, and control of such systems, this thesis summarizes various lessons learned during years of implementation. Based on what was learned, this thesis investigates key features of infrastructure for modern and flexible intelligent automation systems, as well as a number of important design solutions. For example, an important question is raised whether to decentralize the global state or to give complete access to the main controller.Moreover, in order to develop such systems, a framework for virtual preparation and commissioning is presented, with the main goal to offer support for engineers. As traditional virtual commissioning solutions are not intended for preparing highly flexible, collaborative, and dynamic systems, this framework aims to provide some of the groundwork and point to a direction for fast and integrated preparation and virtual commissioning of such systems.Finally, this thesis summarizes some of the investigations made on planning as satisfiability, in order to evaluate how different methods improve planning performance. Throughout the thesis, an industrial material kitting use case exemplifies presented perspectives, lessons learned, and frameworks

    Engineering a multi-agent systems approach for realizing collaborative asset administration shells

    Get PDF
    In recent years, there has been a high demand for flexible and reconfigurable processes to meet the fast-changing market conditions. In this context, Industry 4.0 is promoting the digitization of traditional production systems towards intelligent factories with highly automated and rapidly adaptable capabilities based on Industrial Cyber-Physical Systems (ICPS). This digitization process is currently being leveraged by the so-called Asset Administration Shell (AAS), a standardized digital representation of an asset that provides the uniform access to the asset information. Additionally, the AASs offer the digital basis for future autonomous systems, where intelligent AASs may perform collaborative functions to enhance industrial processes. However, currently such solutions are still at an early stage of maturity. In this sense, this paper explores the adoption of a Multi-agent Systems (MAS) approach to provide the required intelligent and collaborative aspects for the traditional AAS. The proposed MAS-based AAS solution was applied in an industrial automation case study to analyze the feasibility of MAS to perform intelligent and collaborative functions in the AAS context.info:eu-repo/semantics/publishedVersio

    Control components for Collaborative and Intelligent Automation Systems

    Get PDF
    Collaborative and intelligent automation systems need intelligent control systems. Some of this intelligence exist on a per-component basis in the form of vision, sensing, motion, and path planning algorithms. To fully take advantage of this intelligence, also the coordination of subsystems need to exhibit intelligence. While there exist middleware solutions that eases communication, development, and reuse of such subsystems, for example the Robot Operating System (ROS), good coordination also requires knowledge about how control is supposed to be performed, as well as expected behavior of the subsystems. This paper introduces lightweight components that wraps ROS2 nodes into composable control components from which an intelligent control system can be built. The ideas are implemented on a use case involving collaborative robots with on-line path planning, intelligent tools, and human operators

    Sequence Planner: A Framework for Control of Intelligent Automation Systems

    Get PDF
    This paper presents a framework that tackles the challenges met in the development of automation systems featuring collaborative robotics and other machines that have some degree of autonomy. These machines rely on online algorithms for both sensing and acting in order to achieve a very high level of flexibility. To take advantage of these new machines and algorithms, control systems must also be increasingly flexible. In this paper, we present a framework for control of this new class of intelligent automation systems called Sequence Planner (SP), which helps with control of both traditional automation equipment and machines with autonomy. To aid the complex task of developing automation control solutions, SP relies on supporting algorithms for control logic synthesis and online planning. SP has been implemented with plug-in support for the Robot Operating System (ROS) and applied to an industrial demonstrator. We present our findings on how SP performed as a control system for this demonstrator, where we show that it is an adequate approach to implement automation for a highly flexible single station system. As a standardized way of automating such systems is missing, we hope that our contribution will provide a foundation for how to develop intelligent automation systems

    Advances in Intelligent Robotics and Collaborative Automation

    Get PDF
    This book provides an overview of a series of advanced research lines in robotics as well as of design and development methodologies for intelligent robots and their intelligent components. It represents a selection of extended versions of the best papers presented at the Seventh IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications IDAACS 2013 that were related to these topics. Its contents integrate state of the art computational intelligence based techniques for automatic robot control to novel distributed sensing and data integration methodologies that can be applied to intelligent robotics and automation systems. The objective of the text was to provide an overview of some of the problems in the field of robotic systems and intelligent automation and the approaches and techniques that relevant research groups within this area are employing to try to solve them.The contributions of the different authors have been grouped into four main sections:• Robots• Control and Intelligence• Sensing• Collaborative automationThe chapters have been structured to provide an easy to follow introduction to the topics that are addressed, including the most relevant references, so that anyone interested in this field can get started in the area

    Advances in Intelligent Robotics and Collaborative Automation

    Get PDF
    This book provides an overview of a series of advanced research lines in robotics as well as of design and development methodologies for intelligent robots and their intelligent components. It represents a selection of extended versions of the best papers presented at the Seventh IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications IDAACS 2013 that were related to these topics. Its contents integrate state of the art computational intelligence based techniques for automatic robot control to novel distributed sensing and data integration methodologies that can be applied to intelligent robotics and automation systems. The objective of the text was to provide an overview of some of the problems in the field of robotic systems and intelligent automation and the approaches and techniques that relevant research groups within this area are employing to try to solve them.The contributions of the different authors have been grouped into four main sections:• Robots• Control and Intelligence• Sensing• Collaborative automationThe chapters have been structured to provide an easy to follow introduction to the topics that are addressed, including the most relevant references, so that anyone interested in this field can get started in the area
    • …
    corecore