2,524 research outputs found

    A Bank of Reconfigurable LQG Controllers for Linear Systems Subjected to Failures

    Get PDF
    An approach for controller reconfiguration is presented. The starting point in the analysis is a sufficiently accurate continuous linear time-invariant (LTI) model of the nominal system. Based on a bank of reconfigurable LQG controllers, each designed for a particular combination of total faults, the reconfiguration consists of two operation modes. In the first mode a switching is invoked towards one of the pre-designed LQG controllers on the basis of the information about only the combination of total faults that is in effect. In the second mode, which is activated in cases of partial and component faults, a dynamic correction procedure is initiated which tries to reconfigure the currently active controller in such a way, that the failed closed-loop system remains stable and its performance is as close as possible to the performance of the closed-loop system with only total faults present in the system. In cases of partial faults the second mode is practically an extension of the modified pseudo-inverse method. In cases of component faults the second mode is based on an LMI optimization problem. The approach is illustrated using a model of a real-life space robot manipulator, in which total, partial and component faults are simulate

    A review on analysis and synthesis of nonlinear stochastic systems with randomly occurring incomplete information

    Get PDF
    Copyright q 2012 Hongli Dong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In the context of systems and control, incomplete information refers to a dynamical system in which knowledge about the system states is limited due to the difficulties in modeling complexity in a quantitative way. The well-known types of incomplete information include parameter uncertainties and norm-bounded nonlinearities. Recently, in response to the development of network technologies, the phenomenon of randomly occurring incomplete information has become more and more prevalent. Such a phenomenon typically appears in a networked environment. Examples include, but are not limited to, randomly occurring uncertainties, randomly occurring nonlinearities, randomly occurring saturation, randomly missing measurements and randomly occurring quantization. Randomly occurring incomplete information, if not properly handled, would seriously deteriorate the performance of a control system. In this paper, we aim to survey some recent advances on the analysis and synthesis problems for nonlinear stochastic systems with randomly occurring incomplete information. The developments of the filtering, control and fault detection problems are systematically reviewed. Latest results on analysis and synthesis of nonlinear stochastic systems are discussed in great detail. In addition, various distributed filtering technologies over sensor networks are highlighted. Finally, some concluding remarks are given and some possible future research directions are pointed out. © 2012 Hongli Dong et al.This work was supported in part by the National Natural Science Foundation of China under Grants 61273156, 61134009, 61273201, 61021002, and 61004067, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK, the National Science Foundation of the USA under Grant No. HRD-1137732, and the Alexander von Humboldt Foundation of German

    Assessment Study of the State of the Art in Adaptive Control and its Applications to Aircraft Control

    Get PDF
    Many papers relevant to reconfigurable flight control have appeared over the past fifteen years. In general these have consisted of theoretical issues, simulation experiments, and in some cases, actual flight tests. Results indicate that reconfiguration of flight controls is certainly feasible for a wide class of failures. However many of the proposed procedures although quite attractive, need further analytical and experimental studies for meaningful validation. Many procedures assume the availability of failure detection and identification logic that will supply adequately fast, the dynamics corresponding to the failed aircraft. This in general implies that the failure detection and fault identification logic must have access to all possible anticipated faults and the corresponding dynamical equations of motion. Unless some sort of explicit on line parameter identification is included, the computational demands could possibly be too excessive. This suggests the need for some form of adaptive control, either by itself as the prime procedure for control reconfiguration or in conjunction with the failure detection logic. If explicit or indirect adaptive control is used, then it is important that the identified models be such that the corresponding computed controls deliver adequate performance to the actual aircraft. Unknown changes in trim should be modelled, and parameter identification needs to be adequately insensitive to noise and at the same time capable of tracking abrupt changes. If however, both failure detection and system parameter identification turn out to be too time consuming in an emergency situation, then the concepts of direct adaptive control should be considered. If direct model reference adaptive control is to be used (on a linear model) with stability assurances, then a positive real or passivity condition needs to be satisfied for all possible configurations. This condition is often satisfied with a feedforward compensator around the plant. This compensator must be robustly designed such that the compensated plant satisfies the required positive real conditions over all expected parameter values. Furthermore, with the feedforward only around the plant, a nonzero (but bounded error) will exist in steady state between the plant and model outputs. This error can be removed by placing the compensator also in the reference model. Design of such a compensator should not be too difficult a problem since for flight control it is generally possible to feedback all the system states

    Direct Adaptive Control of Systems with Actuator Failures: State of the Art and Continuing Challenges

    Get PDF
    In this paper, the problem of controlling systems with failures and faults is introduced, and an overview of recent work on direct adaptive control for compensation of uncertain actuator failures is presented. Actuator failures may be characterized by some unknown system inputs being stuck at some unknown (fixed or varying) values at unknown time instants, that cannot be influenced by the control signals. The key task of adaptive compensation is to design the control signals in such a manner that the remaining actuators can automatically and seamlessly take over for the failed ones, and achieve desired stability and asymptotic tracking. A certain degree of redundancy is necessary to accomplish failure compensation. The objective of adaptive control design is to effectively use the available actuation redundancy to handle failures without the knowledge of the failure patterns, parameters, and time of occurrence. This is a challenging problem because failures introduce large uncertainties in the dynamic structure of the system, in addition to parametric uncertainties and unknown disturbances. The paper addresses some theoretical issues in adaptive actuator failure compensation: actuator failure modeling, redundant actuation requirements, plant-model matching, error system dynamics, adaptation laws, and stability, tracking, and performance analysis. Adaptive control designs can be shown to effectively handle uncertain actuator failures without explicit failure detection. Some open technical challenges and research problems in this important research area are discussed

    Intelligent Diagnostics for Aircraft Hydraulic Equipment

    Get PDF
    In aviation industry, unscheduled maintenance costs may vary in a large range depending on several factors, such as specific aircraft system, operational environment, aircraft usage and maintenance policy. These costs will become more noteworthy in the next decade, due to the positive growing of worldwide fleet and the introduction of more technologically advanced aircraft. New implemented technologies will bring new challenges in the Maintenance, Repair and Overhaul (MRO) companies, both because of the rising number of new technologies and high volume of well-established devices, such as Electro-Hydraulic Servo Actuators for primary flight control. Failures in aircraft hydraulic systems deeply influence the overall failure rate and so the relative maintenance costs. For this reason, overhaul procedures for these components still represents a profitable market share for all MRO stakeholders. Innovative solutions able to facilitate maintenance operations can lead to large cost savings. This paper proposes new methodologies and features of the Intelligent Diagnostic system which is being developed in partnership with Lufthansa Technik (LHT). The implementation of this innovative procedure is built on a set of failure detection algorithms, based on Machine Learning techniques. This development requires first to bring together the results from different parallel research activities: 1. Identification of critical components from historical data; 2. Designing and testing automatic and adaptable procedure for first faults detection; 3. High-fidelity mathematical modeling of considered test units, for deeper physics analysis of possible failures; 4. Implementation of Machine Learning reasoner, able to process experimental and simulated data

    Requirements Analysis of a Quad-Redundant Flight Control System

    Full text link
    In this paper we detail our effort to formalize and prove requirements for the Quad-redundant Flight Control System (QFCS) within NASA's Transport Class Model (TCM). We use a compositional approach with assume-guarantee contracts that correspond to the requirements for software components embedded in an AADL system architecture model. This approach is designed to exploit the verification effort and artifacts that are already part of typical software verification processes in the avionics domain. Our approach is supported by an AADL annex that allows specification of contracts along with a tool, called AGREE, for performing compositional verification. The goal of this paper is to show the benefits of a compositional verification approach applied to a realistic avionics system and to demonstrate the effectiveness of the AGREE tool in performing this analysis.Comment: Accepted to NASA Formal Methods 201

    Fault tolerant control of a quadrotor using L-1 adaptive control

    Get PDF
    Purpose – The growing use of small unmanned rotorcraft in civilian applications means that safe operation is increasingly important. The purpose of this paper is to investigate the fault tolerant properties to faults in the actuators of an L1 adaptive controller for a quadrotor vehicle. Design/methodology/approach – L1 adaptive control provides fast adaptation along with decoupling between adaptation and robustness. This makes the approach a suitable candidate for fault tolerant control of quadrotor and other multirotor vehicles. In the paper, the design of an L1 adaptive controller is presented. The controller is compared to a fixed-gain LQR controller. Findings – The L1 adaptive controller is shown to have improved performance when subject to actuator faults, and a higher range of actuator fault tolerance. Research limitations/implications – The control scheme is tested in simulation of a simple model that ignores aerodynamic and gyroscopic effects. Hence for further work, testing with a more complete model is recommended followed by implementation on an actual platform and flight test. The effect of sensor noise should also be considered along with investigation into the influence of wind disturbances and tolerance to sensor failures. Furthermore, quadrotors cannot tolerate total failure of a rotor without loss of control of one of the degrees of freedom, this aspect requires further investigation. Practical implications – Applying the L1 adaptive controller to a hexrotor or octorotor would increase the reliability of such vehicles without recourse to methods that require fault detection schemes and control reallocation as well as providing tolerance to a total loss of a rotor. Social implications – In order for quadrotors and other similar unmanned air vehicles to undertake many proposed roles, a high level of safety is required. Hence the controllers should be fault tolerant. Originality/value – Fault tolerance to partial actuator/effector faults is demonstrated using an L1 adaptive controller

    Метод реконфігурації керування літаком в умовах виникнення особливої ситуації в польоті

    Get PDF
    Comparative analysis of the ICAO statistics showed that 35% of the aircraft losses associated with failures and damages of automatic control systems, mainly with failures of drives and external damage of tours and controllers. Classification of approaches to reconfigurable flight control systems is shown. The aim of this work is to develop method of reconfiguration to save the stability and controllability of the aircraft during the collisions with mechanical, biological and electrical elements.Выполнен сравнительный анализ статистических данных ICAO. Показано, что 35% случаев возникновения особых ситуаций связаны с отказами и повреждениями систем автоматического управления, главным образом с отказами приводов и повреждениями внешних обводов и управляющих органов. Приведена классификация существующих походов и методов создания реконфигурируемых систем управления сложными объектами в условиях возникновения особых ситуаций. Разработан метод реконфигурации для сохранения устойчивости и управляемости самолета при возникновении особых ситуаций в полете.Виконано порівняльний аналіз статистичних даних ICAO. Показано, що 35 % випадків виникнення особливих ситуацій пов’язано з відмовами та пошкодженнями систем автоматичного керування, головним чином із відмовами приводів та пошкодженнями зовнішніх обводів і керуючих органів. Наведено класифікацію існуючих походів та методів створення реконфігурованих систем керування складними об’єктами в умовах виникнення особливих ситуацій. Розроблено метод реконфігурації для збереження стійкості та керованості літака в умовах виникнення особливих ситуацій у польоті, та запобігання її розвитку або переростання в катастрофічну

    Damage Tolerant Active Contro l: Concept and State of the Art

    Get PDF
    Damage tolerant active control is a new research area relating to fault tolerant control design applied to mechanical structures. It encompasses several techniques already used to design controllers and to detect and to diagnose faults, as well to monitor structural integrity. Brief reviews of the common intersections of these areas are presented, with the purpose to clarify its relations and also to justify the new controller design paradigm. Some examples help to better understand the role of the new area

    Immunity-Based Accommodation of Aircraft Subsystem Failures

    Get PDF
    This thesis presents the design, development, and flight-simulation testing of an artificial immune system (AIS) based approach for accommodation of different aircraft subsystem failures.;Failure accommodation is considered as part of a complex integrated AIS scheme that contains four major components: failure detection, identification, evaluation, and accommodation. The accommodation part consists of providing compensatory commands to the aircraft under specific abnormal conditions based on previous experience. In this research effort, the possibility of building an AIS allowing the extraction of pilot commands is investigated.;The proposed approach is based on structuring the self (nominal conditions) and the non-self (abnormal conditions) within the AIS paradigm, as sets of artificial memory cells (mimicking behavior of T-cells, B-cells, and antibodies) consisting of measurement strings, over pre-defined time windows. Each string is a set of features values at each sample time of the flight including pilot inputs, system states, and other variables. The accommodation algorithm relies on identifying the memory cell that is the most similar to the in-coming measurements. Once the best match is found, control commands corresponding to this match will be extracted from the memory and used for control purposes.;The proposed methodology is illustrated through simulation of simple maneuvers at nominal flight conditions, different actuators, and sensor failure conditions. Data for development and demonstration have been collected from West Virginia University 6-degrees-of-freedom motion-based flight simulator. The aircraft model used for this research represents a supersonic fighter which includes model following adaptive control laws based on non-linear dynamic inversion and artificial neural network augmentation.;The simulation results demonstrate the possibility of extracting pilot compensatory commands from the self/non-self structure and the capability of the AIS paradigm to address the problem of accommodating actuator and sensor malfunctions as a part of a comprehensive and integrated framework along with abnormal condition detection, identification, and evaluation
    corecore